School of Science Department of Science
機械学習・最適化・コンピュータビジョンの手法とそれらを創薬・材料科学・化学・水産・海洋工学等に応用する研究を行なっています。
Researcher Profile
Updated on 2025/05/11
機械学習・最適化・コンピュータビジョンの手法とそれらを創薬・材料科学・化学・水産・海洋工学等に応用する研究を行なっています。
博士(人間・環境学) ( 2016.3 京都大学 )
Materials Informatics
Machine Learning
情報科学
Computer Vision
Bioinformatics
Cheminformatics
Informatics / Life, health and medical informatics / 情報科学
Kyoto University Graduate School of Human and Environmental Studies Department of Human Coexistence
2013.4 - 2016.3
Kyoto University Graduate School of Human and Environmental Studies Department of Human Coexistence
2011.4 - 2013.3
Kyoto University Faculty of Integrated Human Studies Division of Cognitive and Information Sciences
2007.4 - 2011.3
Country: Japan
Institute of Science Tokyo
2024.10
Tokyo Institute of Technology
2022.10 - 2024.10
Yokohama City University Graduate School of Medical Life Science Associate Professor
2020.4
Country:Japan
RIKEN Medical Innovation Hub Postdoctoral Researcher
2018.6 - 2020.3
RIKEN Center for Advanced Intelligent Project (AIP) Postdoctoral Researcher
2018.4 - 2020.3
Kyoto University Graduate School of Medicine Specially Appointed Assistant Professor
2018.4 - 2020.3
The University of Tokyo Graduate School of Frontier Sciences
2016.4 - 2018.3
A data-driven generative strategy to avoid reward hacking in multi-objective molecular design Reviewed
Tatsuya Yoshizawa, Shoichi Ishida, Tomohiro Sato, Masateru Ohta, Teruki Honma, Kei Terayama
Nature Communications 16 ( 2409 ) 2025.3
AIPHAD, an active learning web application for visual understanding of phase diagrams Reviewed
Ryo Tamura, Haruhiko Morito, Guillaume Deffrennes, Masanobu Naito, Yoshitaro Nose, Taichi Abe, Kei Terayama
Communications Materials 5 ( 1 ) 2024.7
Kei Terayama, Yamato Osaki, Takehiro Fujita, Ryo Tamura, Masanobu Naito, Koji Tsuda, Toru Matsui, Masato Sumita
Journal of Chemical Theory and Computation 19 ( 19 ) 6770 - 6781 2023.9
Yuki Murakami, Shoichi Ishida, Yosuke Demizu, Kei Terayama
Digital Discovery 2023.8
ChemTSv2: Functional molecular design using de novo molecule generator Reviewed
Shoichi Ishida, Tanuj Aasawat, Masato Sumita, Michio Katouda, Tatsuya Yoshizawa, Kazuki Yoshizoe, Koji Tsuda, Kei Terayama
WIREs Computational Molecular Science 2023.7
Selective Inhibitor Design for Kinase Homologs Using Multiobjective Monte Carlo Tree Search Reviewed International journal
Tatsuya Yoshizawa, Shoichi Ishida, Tomohiro Sato, Masateru Ohta, Teruki Honma, Kei Terayama
Journal of Chemical Information and Modeling 62 ( 22 ) 5351 - 5360 2022.11
De novo creation of a naked eye–detectable fluorescent molecule based on quantum chemical computation and machine learning Reviewed
Masato Sumita, Kei Terayama, Naoya Suzuki, Shinsuke Ishihara, Ryo Tamura, Mandeep K. Chahal, Daniel T. Payne, Kazuki Yoshizoe, Koji Tsuda
Science Advances 8 ( 10 ) eabj3906 2022.3
Acceleration of phase diagram construction by machine learning incorporating Gibbs' phase rule Reviewed
Kei Terayama, Kwangsik Han, Ryoji Katsube, Ikuo Ohnuma, Taichi Abe, Yoshitaro Nose, Ryo Tamura
Scripta Materialia 208 114335 - 114335 2022.2
Kei Terayama, Katsunori Mizuno, Shigeru Tabeta, Shingo Sakamoto, Yusuke Sugimoto, Kenichi Sugimoto, Hironobu Fukami, Masaaki Sakagami, Lea A. Jimenez
Methods in Ecology and Evolution 13 ( 2 ) 339 - 345 2021.10
Kei Terayama, Masato Sumita, Michio Katouda, Koji Tsuda, Yasushi Okuno
Journal of Chemical Theory and Computation 2021.7
Black-Box Optimization for Automated Discovery Invited Reviewed
Kei Terayama, Masato Sumita, Ryo Tamura, Koji Tsuda
Accounts of Chemical Research 2021.2
Extraction of protein dynamics information from cryo-EM maps using deep learning Reviewed
Shigeyuki Matsumoto, Shoichi Ishida, Mitsugu Araki, Takayuki Kato, Kei Terayama, Yasushi Okuno
Nature Machine Intelligence 3 2021.2
Naoto Ienaga, Kentaro Higuchi, Toshinori Takashi, Koichiro Gen, Koji Tsuda, Kei Terayama
Scientific Reports 11 ( 1 ) 2021.1
Pushing property limits in materials discovery via boundless objective-free exploration Reviewed
Kei Terayama, Masato Sumita, Ryo Tamura, Daniel T. Payne, Mandeep K. Chahal, Shinsuke Ishihara, Koji Tsuda
Chemical Science 11 ( 23 ) 5959 - 5968 2020.5
Integration of sonar and optical camera images using deep neural network for fish monitoring Reviewed
K. Terayama, K. Shin, K. Mizuno, K. Tsuda
Aquacultural Engineering 86 102000 2019.7
Efficient Construction Method for Phase Diagrams Using Uncertainty Sampling Reviewed
K. Terayama, R. Tamura, Y. Nose, H. Hiramatsu, H. Hosono, Y. Okuno, K. Tsuda
Physical Review Materials 3 ( 3 ) 033802 2019.3
Fine-grained optimization method for crystal structure prediction Reviewed
K. Terayama, T. Yamashita, T. Oguchi, K. Tsuda
npj Computational Materials 4 ( 32 ) 2018.7
Machine learning accelerates MD-based binding pose prediction between ligands and proteins Reviewed
Kei Terayama, Hiroaki Iwata, Mitsugu Araki, Yasushi Okuno, Koji Tsuda
Bioinformatics 34 ( 5 ) 770 - 778 2018.3
ChemTS: An Efficient Python Library for de novo Molecular Generation Reviewed International journal
X. Yang, J. Zhang, K. Yoshizoe, K. Terayama, K. Tsuda
Science and Technology of Advanced Materials 18 ( 1 ) 972 - 976 2017.11
Large language models open new way of AI-assisted molecule design for chemists Reviewed
Shoichi Ishida, Tomohiro Sato, Teruki Honma, Kei Terayama
Journal of Cheminformatics 17 36 2025.3
Shigeyuki Matsumoto, Yuta Isaka, Ryo Kanada, Biao Ma, Mitsugu Araki, Shuntaro Chiba, Atsushi Tokuhisa, Hiroaki Iwata, Shoichi Ishida, Yoshinobu Akinaga, Kei Terayama, Ryosuke Kojima, Yohei Harada, Kazuhiro Takemura, Teruki Honma, Akio Kitao, Yasushi Okuno
PNAS Nexus pgaf094 2025.3
Qcforever2: Advanced Automation of Quantum Chemistry Computations Reviewed
Masato Sumita, Kei Terayama, Shoichi Ishida, Kensuke Suga, Shohei Saito, Koji Tsuda
Journal of Computational Chemistry 46 ( 3 ) 2025.1
Rotifer detection and tracking framework using deep learning for automatic culture systems Reviewed
Naoto Ienaga, Toshinori Takashi, Hitoko Tamamizu, Kei Terayama
Smart Agricultural Technology 9 100577 - 100577 2024.12
Data-driven study of the enthalpy of mixing in the liquid phase Reviewed
Guillaume Deffrennes, Bengt Hallstedt, Taichi Abe, Quentin Bizot, Evelyne Fischer, Jean-Marc Joubert, Kei Terayama, Ryo Tamura
Calphad 87 102745 - 102745 2024.12
Ai Koizumi, Guillaume Deffrennes, Kei Terayama, Ryo Tamura
Scientific Reports 14 ( 1 ) 2024.11
Fumiyasu Oba, Takayuki Nagai, Ryoji Katsube, Yasuhide Mochizuki, Masatake Tsuji, Guillaume Deffrennes, Kota Hanzawa, Akitoshi Nakano, Akira Takahashi, Kei Terayama, Ryo Tamura, Hidenori Hiramatsu, Yoshitaro Nose, Hiroki Taniguchi
Science and Technology of Advanced Materials 2024.11
Tokimu Kadoi, Katsunori Mizuno, Shoichi Ishida, Shogo Onozato, Hirofumi Washiyama, Yohei Uehara, Yoshimoto Saito, Kazutoshi Okamoto, Shingo Sakamoto, Yusuke Sugimoto, Kei Terayama
Scientific Reports 14 ( 1 ) 2024.11
Target Material Property‐Dependent Cluster Analysis of Inorganic Compounds Reviewed
Nobuya Sato, Akira Takahashi, Shin Kiyohara, Kei Terayama, Ryo Tamura, Fumiyasu Oba
Advanced Intelligent Systems 2024.8
Katsunori Mizuno, Kei Terayama, Shoichi Ishida, Jasmin A. Godbold, Martin Solan
Royal Society Open Science 11 ( 6 ) 2024.6
Predicting condensate formation of protein and RNA under various environmental conditions Reviewed
Ka Yin Chin, Shoichi Ishida, Yukio Sasaki, Kei Terayama
BMC Bioinformatics 25 ( 1 ) 2024.4
AI-driven molecular generation of not-patented pharmaceutical compounds using world open patent data Reviewed
Yugo Shimizu, Masateru Ohta, Shoichi Ishida, Kei Terayama, Masanori Osawa, Teruki Honma, Kazuyoshi Ikeda
Journal of Cheminformatics 15 ( 1 ) 2023.12
An efficient segmentation method based on semi-supervised learning for seafloor monitoring in Pujada Bay, Philippines Reviewed
Shulei Wang, Katsunori Mizuno, Shigeru Tabeta, Kei Terayama, Shingo Sakamoto, Yusuke Sugimoto, Kenichi Sugimoto, Hironobu Fukami, Lea A. Jimenez
Ecological Informatics 78 102371 - 102371 2023.12
Akira Takahashi, Kei Terayama, Yu Kumagai, Ryo Tamura, Fumiyasu Oba
Science and Technology of Advanced Materials: Methods 3 ( 1 ) 2023.10
Ranking Pareto optimal solutions based on projection free energy Reviewed
Ryo Tamura, Kei Terayama, Masato Sumita, Koji Tsuda
Physical Review Materials 7 ( 9 ) 2023.9
Individual health-disease phase diagrams for disease prevention based on machine learning Reviewed
Kazuki Nakamura, Eiichiro Uchino, Noriaki Sato, Ayano Araki, Kei Terayama, Ryosuke Kojima, Koichi Murashita, Ken Itoh, Tatsuya Mikami, Yoshinori Tamada, Yasushi Okuno
Journal of Biomedical Informatics 144 104448 - 104448 2023.8
A framework to predict binary liquidus by combining machine learning and CALPHAD assessments Reviewed
Guillaume Deffrennes, Kei Terayama, Taichi Abe, Etsuko Ogamino, Ryo Tamura
Materials & Design 232 112111 - 112111 2023.8
Deep-learning-based differential diagnosis of follicular thyroid tumors using histopathological images Reviewed
Satoshi Nojima, Tokimu Kadoi, Ayana Suzuki, Chiharu Kato, Shoichi Ishida, Kansuke Kido, Kazutoshi Fujita, Yasushi Okuno, Mitsuyoshi Hirokawa, Kei Terayama, Eiichi Morii
Modern Pathology 100296 - 100296 2023.7
Monitoring of cage-cultured sea cucumbers using an underwater time-lapse camera and deep learning-based image analysis Reviewed
Takero Yoshida, Jinxin Zhou, Kei Terayama, Daisuke Kitazawa
Smart Agricultural Technology 3 100087 - 100087 2023.2
Semantic Segmentation of seafloor images in Philippines based on semi-supervised learning
Shulei Wang, Katsunori Mizuno, Shigeru Tabeta, Terayama Kei
2023 IEEE International Symposium on Underwater Technology, UT 2023 2023
Quantitative analysis of protein dynamics using a deep learning technique combined with experimental cryo-EM density data and MD simulations Invited Reviewed
Shigeyuki Matsumoto, Shoichi Ishida, Kei Terayama, Yasuhshi Okuno
Biophysics and Physicobiology 20 ( 2 ) e200022 2023
Classification of scanning electron microscope images of pharmaceutical excipients using deep convolutional neural networks with transfer learning Reviewed
Hiroaki Iwata, Yoshihiro Hayashi, Aki Hasegawa, Kei Terayama, Yasushi Okuno
International Journal of Pharmaceutics: X 4 100135 - 100135 2022.12
Naoto Ienaga, Shuhei Takahata, Kei Terayama, Daiki Enomoto, Hiroyuki Ishihara, Haruka Noda, Hiromichi Hagihara
Occupational Therapy International 2022 1 - 9 2022.11
Automatic Rietveld refinement by robotic process automation with RIETAN-FP Reviewed
Ryo Tamura, Masato Sumita, Kei Terayama, Koji Tsuda, Fujio Izumi, Yoshitaka Matsushita
Science and Technology of Advanced Materials: Methods 2022.11
クライオEM密度マップからのタンパク質ダイナミクス情報推定
寺山 慧, 石田 祥一, 松本 篤幸, 奥野 恭史
生物工学会誌 100 ( 11 ) 599 - 602 2022.11
QCforever: A Quantum Chemistry Wrapper for Everyone to Use in Black-Box Optimization Reviewed
Masato Sumita, Kei Terayama, Ryo Tamura, Koji Tsuda
Journal of Chemical Information and Modeling 62 ( 18 ) 4427 - 4434 2022.9
Normal hatching rate estimation for bulk samples of Pacific bluefin tuna (Thunnus orientalis) eggs using deep learning Reviewed
Naoto Ienaga, Kentaro Higuchi, Toshinori Takashi, Koichiro Gen, Kei Terayama
Aquacultural Engineering 98 102274 - 102274 2022.8
Single-Image Super-Resolution Improvement of X-ray Single-Particle Diffraction Images Using a Convolutional Neural Network Reviewed
Atsushi Tokuhisa, Yoshinobu Akinaga, Kei Terayama, Yuji Okamoto, Yasushi Okuno
Journal of Chemical Information and Modeling 62 ( 14 ) 3352 - 3364 2022.7
A novel three-dimensional imaging system based on polysaccharide staining for accurate histopathological diagnosis of inflammatory bowel diseases. Reviewed International journal
Satoshi Nojima, Shoichi Ishida, Kei Terayama, Katsuhiko Matsumoto, Takahiro Matsui, Shinichiro Tahara, Kenji Ohshima, Hiroki Kiyokawa, Kansuke Kido, Koto Ukon, Shota Y Yoshida, Tomoki T Mitani, Yuichiro Doki, Tsunekazu Mizushima, Yasushi Okuno, Etsuo A Susaki, Hiroki R Ueda, Eiichi Morii
Cellular and molecular gastroenterology and hepatology 14 ( 4 ) 905 - 924 2022.7
Takehiro Fujita, Kei Terayama, Masato Sumita, Ryo Tamura, Yasuyuki Nakamura, Masanobu Naito, Koji Tsuda
Science and Technology of Advanced Materials 23 ( 1 ) 352 - 360 2022.6
Extraction of Protein Dynamics Hidden in Cryo-EM Maps Using Deep Learning Reviewed
Shigeyuki MATSUMOTO, Kei TERAYAMA, Yasushi OKUNO
Seibutsu Butsuri 62 ( 3 ) 193 - 197 2022.6
Bayesian optimization package: PHYSBO Reviewed
Yuichi Motoyama, Ryo Tamura, Kazuyoshi Yoshimi, Kei Terayama, Tsuyoshi Ueno, Koji Tsuda
Computer Physics Communications 278 108405 - 108405 2022.5
Machine-learning-based phase diagram construction for high-throughput batch experiments Reviewed
Ryo Tamura, Guillaume Deffrennes, Kwangsik Han, Taichi Abe, Haruhiko Morito, Yasuyuki Nakamura, Masanobu Naito, Ryoji Katsube, Yoshitaro Nose, Kei Terayama
Science and Technology of Advanced Materials: Methods 2 ( 1 ) 153 - 161 2022.5
Ryo Kanada, Kei Terayama, Atsushi Tokuhisa, Shigeyuki Matsumoto, Yasushi Okuno
Journal of Chemical Theory and Computation 18 ( 4 ) 2062 - 2074 2022.4
AI-Driven Synthetic Route Design Incorporated with Retrosynthesis Knowledge Reviewed International journal
Shoichi Ishida, Kei Terayama, Ryosuke Kojima, Kiyosei Takasu, Yasushi Okuno
Journal of Chemical Information and Modeling 62 ( 6 ) 1357 - 1367 2022.3
A machine learning–based classification approach for phase diagram prediction Reviewed
Guillaume Deffrennes, Kei Terayama, Taichi Abe, Ryo Tamura
Materials & Design 215 110497 - 110497 2022.3
Semi-automation of gesture annotation by machine learning and human collaboration Reviewed
Naoto Ienaga, Alice Cravotta, Kei Terayama, Bryan W. Scotney, Hideo Saito, M. Grazia Busà
Language Resources and Evaluation 2022.2
Topological alternation from structurally adaptable to mechanically stable crosslinked polymer Reviewed
Wei-Hsun Hu, Ta-Te Chen, Ryo Tamura, Kei Terayama, Siqian Wang, Ikumu Watanabe, Masanobu Naito
Science and Technology of Advanced Materials 23 ( 1 ) 66 - 75 2022.2
Integrating Incompatible Assay Data Sets with Deep Preference Learning Reviewed
Xiaolin Sun, Ryo Tamura, Masato Sumita, Kenichi Mori, Kei Terayama, Koji Tsuda
ACS Medicinal Chemistry Letters 13 ( 1 ) 70 - 75 2022.1
Yoshifumi Amamoto, Hiroteru Kikutake, Ken Kojio, Atsushi Takahara, Kei Terayama
Polymer Journal 53 ( 11 ) 1269 - 1279 2021.7
CrySPY: a crystal structure prediction tool accelerated by machine learning Reviewed
Tomoki Yamashita, Shinichi Kanehira, Nobuya Sato, Hiori Kino, Kei Terayama, Hikaru Sawahata, Takumi Sato, Futoshi Utsuno, Koji Tsuda, Takashi Miyake, Tamio Oguchi
Science and Technology of Advanced Materials: Methods 1 ( 1 ) 87 - 97 2021.7
Biao Ma, Kei Terayama, Shigeyuki Matsumoto, Yuta Isaka, Yoko Sasakura, Hiroaki Iwata, Mitsugu Araki, Yasushi Okuno
Journal of Chemical Information and Modeling 2021.7
Pose Estimation of Swimming Fish Using NACA Airfoil Model for Collective Behavior Analysis Reviewed
Hitoshi Habe, Yoshiki Takeuchi, Kei Terayama, Masa-aki Sakagami
Journal of Robotics and Mechatronics 33 ( 3 ) 547 - 555 2021.6
Yucheng Zhang, Jinzhe Zhang, Kuniko Suzuki, Masato Sumita, Kei Terayama, Jiawen Li, Zetian Mao, Koji Tsuda, Yuji Suzuki
Applied Physics Letters 118 ( 22 ) 223904 - 223904 2021.5
A deep learning system to diagnose the malignant potential of urothelial carcinoma cells in cytology specimens Reviewed International journal
Satoshi Nojima, Kei Terayama, Saeko Shimoura, Sachiko Hijiki, Norio Nonomura, Eiichi Morii, Yasushi Okuno, Kazutoshi Fujita
Cancer Cytopathology 2021.5
Hiromichi Hagihara, Naoto Ienaga, Kei Terayama, Yusuke Moriguchi, Masa‐aki Sakagami
Infancy 26 ( 1 ) 148 - 167 2020.12
CompRet: a comprehensive recommendation framework for chemical synthesis planning with algorithmic enumeration Reviewed International journal
Ryosuke Shibukawa, Shoichi Ishida, Kazuki Yoshizoe, Kunihiro Wasa, Kiyosei Takasu, Yasushi Okuno, Kei Terayama, Koji Tsuda
Journal of Cheminformatics 12 ( 1 ) 52 - 52 2020.9
Katsunori Mizuno, Kei Terayama, Seiichiro Hagino, Shigeru Tabeta, Shingo Sakamoto, Toshihiro Ogawa, Kenichi Sugimoto, Hironobu Fukami
Scientific Reports 10 ( 1 ) 12416 2020.7
Coarse-Grained Diffraction Template Matching Model to Retrieve Multiconformational Models for Biomolecule Structures from Noisy Diffraction Patterns. Reviewed International journal
Atsushi Tokuhisa, Ryo Kanada, Shuntaro Chiba, Kei Terayama, Yuta Isaka, Biao Ma, Narutoshi Kamiya, Yasushi Okuno
Journal of chemical information and modeling 60 ( 6 ) 2803 - 2818 2020.6
H. Hagihara#*, N. Ienaga#, D. Enomoto, S. Takahata, H. Ishihara, H. Noda, K. Tsuda, and K. Terayama*
Occupational Therapy International 2020 8542191 - 9 2020.4
Experimental establishment of phase diagram guided by uncertainty sampling: an application to the deposition of Zn-Sn-P films by molecular beam epitaxy Reviewed
R. Katsube, K. Terayama, R. Tamura, Y. Nose
ACS Materials Letters 2 571 - 575 2020.4
Ryo Kanada, Atsushi Tokuhisa, Koji Tsuda, Yasushi Okuno, Kei Terayama
Biomolecules 10 ( 3 ) 482 - 482 2020.3
NMR-TS: de novo molecule identification from NMR spectra Reviewed
Jinzhe Zhang, Kei Terayama, Masato Sumita, Kazuki Yoshizoe, Kengo Ito, Jun Kikuchi, Koji Tsuda
Science and Technology of Advanced Materials 21 ( 1 ) 552 - 561 2020.1
evERdock BAI: machine-learning-guided selection of protein-protein complex structure Reviewed International journal
K. Terayama, A. Shinobu, K. Tsuda, K. Takemura, A. Kitao
Journal of Chemical Physics, 151 ( 21 ) 215104 - 215104 2019.12
S. Ishida, K. Terayama, R. Kojima, K. Takasu, Y. Okuno
Journal of Chemical Information and Modeling 59 ( 12 ) 5026 - 5033 2019.12
Deep Learning-based quality filtering of mechanically exfoliated 2D crystals Reviewed
Y. Saito, K. Shin, K. Terayama, S. Desai, M. Onga, Y. Nakagawa, Y. M. Itahashi, Y. Iwasa, M. Yamada, K. Tsuda
npj Computational Materials 5 ( 124 ) 2019.12
Development of an efficient coral-coverage estimation method using a towed optical camera array system (SSS: Speedy Sea Scanner) and deep-learning-based segmentation: A sea trial at the Kujuku-shima islands Reviewed
K. Mizuno, K. Terayama, S. Tabeta, S. Sakamoto, Y. Matsumoro, Y. Sugimoto, T. Ogawa, K. Sugimoto, H. Fukami, M. Sakagami, M. Deki, A. Kawakubo
IEEE Journal of Oceanic Engineering 45 ( 4 ) 1386 - 1395 2019.10
Enhancing biomolecular sampling with reinforcement learning: tree search molecular dynamics simulation method Reviewed
K. Shin, D. P. Tran, K. Takemura, A. Kitao, K. Terayama, K. Tsuda
ACS Omega 4 ( 9 ) 13853 - 13862 2019.8
Efficient recommendation tool of materials by executable file based on machine learning Reviewed
K. Terayama, K. Tsuda, R. Tamura
Japanese Journal of Applied Physics, 58 ( 9 ) 098001 2019.8
Mitsugu Araki, Hiroaki Iwata, Biao Ma, Atsuto Fujita, Kei Terayama, Yukari Sagae, Fumie Ono, Koji Tsuda, Narutoshi Kamiya, Yasushi Okuno
Journal of Computational Chemistry 39 ( 32 ) 2679 - 2689 2018.12
Population-based de novo Molecule Generation, Using Grammatical Evolution Reviewed
N. Yoshikawa, K. Terayama, M. Sumita, T. Homma, K. Oono, K. Tsuda
Chemistry Letters 47 ( 11 ) 1431 - 1434 2018.11
Development of coral-coverage estimation method using deep learning and sea trial: at Kujuku-shima islands
Kei Terayama, Katsunori Mizuno, Mayumi Deki, Akihiro Kawakubo, Hironobu Fukami, Shingo Sakamoto, Yusuke Sugimoto, Masa-aki Sakagami
2018 OCEANS - MTS/IEEE KOBE TECHNO-OCEANS (OTO) 2018
Measuring tail beat frequency and coast phase in school of fish for collective motion analysis Reviewed
Kei Terayama, Hirohisa Hioki, Masa-Aki Sakagami
Proceedings of SPIE - The International Society for Optical Engineering 10225 2017
Multiple Fish Tracking with an NACA Airfoil Model for Collective Behavior Analysis Reviewed
K. Terayama, H. Habe, M. Sakagami
IPSJ Transactions on Computer Vision and Applications 8 ( 4 ) 1 - 7 2016.8
A measurement method for speed distribution of collective motion with optical flow and its applications to school of fish Reviewed
K. Terayama, H. Hioki, M. Sakagam
International Journal of Semantic Computing 9 ( 2 ) 143 - 168 2015.6
A measurement method for speed distribution of collective motion with optical flow and its application to estimation of rotation curve Reviewed
Kei Terayama, Hirohisa Hioki, Masa-Aki Sakagami
Proceedings - 2014 IEEE International Symposium on Multimedia, ISM 2014 32 - 39 2015.2
Appearance-based Multiple Fish Tracking for Collective Motion Analysis Reviewed
Kei Terayama, Koki Hongo, Hitoshi Habe, Masa-aki Sakagami
Proceedings 3rd IAPR Asian Conference on Pattern Recognition ACPR 2015 361 - 365 2015
A Practical Classifier for Photographs and Non-Photographic Images Based on Local Visual Features Reviewed
Kei Terayama, Hirohisa Hioki
2015 14th IAPR International Conference on Machine Vision Applications (MVA) 307 - 311 2015
A stream calculus of bottomed sequences for real number computation Reviewed
Kei Terayama, Hideki Tsuiki
Electronic Notes in Theoretical Computer Science 298 383 - 402 2013.11
ラボラトリーオートメーションの実現に向けた抗菌ペプチド設計におけるワークフロー開発
村上優貴, 石田祥一, 出水庸介, 出水庸介, 寺山慧
日本蛋白質科学会年会(Web) 24th 2024
Development of a method for estimating distribution of clams using high-frequency ultrasound and deep learning
門井辰夢, 石田祥一, 寺山慧, 小野寺祥吾, 水野勝紀, 多部田茂, 鷲山裕史, 上原陽平, 齋藤禎一, 岡本一利, 阪本真吾, 杉本裕介
海洋音響学会研究発表会講演論文集 2024 2024
高周波超音波と深層学習を組み合わせたアサリの個体数及び分布把握法の確立に向けて
門井辰夢, 石田祥一, 寺山慧, 小野里祥吾, 水野勝紀, 多部田茂, 鷲山裕史, 上原陽平, 齋藤禎一, 岡本一利, 阪本真吾, 杉本裕介
海洋調査技術学会研究成果発表会講演要旨集 35th 2023
Multiple ligands dockingを用いたSTINGを標的とした新規ヒット化合物の探索
戸板太陽, 石田祥一, 浴本亨, 池口満徳, 出水庸介, 出水庸介, 辻厳一郎, 寺山慧
構造活性相関シンポジウム講演要旨集(CD-ROM) 51st 2023
深層学習を用いたクロマグロの卵質評価 Invited
家永直人, 寺山慧
養殖ビジネス 2022年4月号 2022.4
機械学習による相図作成の効率化 Reviewed
田村 亮, 寺山 慧, 勝部 涼司, 野瀬 嘉太郎
応用物理 91 ( 2 ) 96 - 100 2022.2
理論化学とブラックボックス最適化による物質探索 Invited Reviewed
隅田真人, 寺山慧, 田村亮, 津田宏治
理論化学会誌 フロンティア 3 ( 3 ) 120 - 132 2021.7
Speedy Sea Scanner-portable(SSS-P)を用いたフィリピン沿岸域の海底環境調査
水野勝紀, 多部田茂, 阪本真吾, 杉本裕介, 寺山慧, 寺山慧, 深見裕伸, 阪上雅昭, JIMENEZ Lea.A.
日本沿岸域学会研究討論会講演概要集(CD-ROM) ( 33 ) 2021
AIによる逆合成解析に向けて Invited
寺山慧, 石田祥一, 奥野恭史
月刊「細胞」 51 ( 7 ) 12 - 15 2019.5
計算創薬におけるシミュレーション・機械学習・実験の融合に向けて Invited
徳久淳師, 寺山慧, 奥野恭史
分子シミュレーション研究会会誌 アンサンブル 21 ( 2 ) 115 - 125 2019.4
囲碁AIから逆合成解析へ−情報科学からのアプローチ Invited
寺山慧, 石田祥一, 奥野恭史
化学 74 ( 2 ) 36 - 40 2019.1
Speedy Sea Scannerを用いた久米島沿岸域海底調査とU-netによるサンゴ被度評価とその考察
萩野誠一朗, 水野勝紀, 阪本真吾, 寺山慧, 寺山慧, 鈴木翔太, 多部田茂
海洋調査技術学会研究成果発表会講演要旨集 31st 2019
Current Computer Aided Organic Synthesis Invited
松原誠二郎, 寺山慧, 寺山慧, 奥野恭史, 奥野恭史
Medchem News (Web) 28 ( 4 ) 181 - 186 2018.11
機械学習による効率的なサンプリング手法の開発とその応用例 Invited
寺山慧
マテリアルズインフォマティクス講演会〜材料科学と情報科学のクロスオーバー〜 2021.1
機械学習による相図作成の効率化と例外的材料探索 Invited
寺山慧
第131回 フロンティア材料研究所学術講演会「材料科学における機械学習の応用」 2021.1
GPUを用いた機械学習・画像処理・最適化-創薬・材料科学・海洋工学での応用事例- Invited
寺山 慧
数理工学PBL 2020.2
データ駆動型科学に向けた水中モニタリング手法開発と機械学習 Invited
寺山 慧
理研CSRSインフォマティクス・データ科学推進プログラム成果報告会 2020.1
Dual-scale Fish Tracking in a Large School for Collective Behavior Analysis Invited International conference
Kei Terayama
International Workshop on Aqua Vision 2016 2016.9
Acceleration of MD-based Binding-Pose Prediction with Ligands and Proteins by Machine Learning Invited
Kei Terayama
The 55th Annual Meeting of the Biophysical Society of Japan 2017.9
AIによる水産・養殖の最適化に向けて-総合的な水圏環境モニタリング手法の開発 Invited
寺山 慧
第1回海中海底工学フォーラム・ZERO 2019.4
統計モデリングとデータ駆動型科学のはざまで: 魚群行動・創薬・材料科学を例に Invited
寺山 慧
生態データ統計モデルの包括的推進:個体群・群集・行動 2019.9
Reinforcement Learning and Global Optimization Techniques in Molecular Dynamics Simulations Invited
Kei Terayama
The 57th Annual Meeting of the Biophysical Society of Japan, 2019.9
機械学習と画像処理の水産・環境モニタリング応用-魚群行動とサンゴ分布の解析- Invited
寺山 慧
2019年度海洋生態系モデリングシンポジウム 2019.11
Development of efficient sampling methods based on machine learning techniques and their applications Invited
Kei Terayama
第29回日本MRS年次大会 2019.11
Toward optimization of total environment: forward prediction and parameter optimization in MI Invited International conference
Kei Terayama
Materials Research Meeting 2019 2019.12
AIの可能性と実応用: 魚・サンゴモニタリングから創薬・材料科学まで Invited
寺山 慧
第28回海洋工学シンポジウム 2020.9
化学空間や配座空間をより自由に探索するために: 様々な機械学習・最適化手法とシミュレーションの連携 Invited
寺山慧
第48回構造活性相関シンポジウム 2020.12
能動学習を用いた効率的な相図作成ー材料開発への応用 Invited
寺山慧
第42回IBISML研究会 2021.3
水中での機械学習の応用例: サンゴ被度推定からクロマグロの卵質予測まで Invited
寺山慧
第20回 食料生産技術研究会 2021.11
シミュレーションと機械学習の連携による材料探索 Invited
寺山慧
2021年度ダイナミックアライアンス合同ウェブ分科会 2022.2
強化学習による分子シミュレーションの効率化と分子設計 Invited
寺山慧
第22回日本蛋白質科学会年会 2022.6
De novo molecular design based on the collaboration of simulation and machine learning Invited
The 5th R-CCS International Symposium 2023.2
強化学習を用いた分子構造の多目的最適化 Invited
寺山慧
CBI学会 第447回講演会「創薬研究を加速する計算科学の新潮流〜量子化学、分子動力学、機械学習の融合〜」 2023.7
円運動する魚群のデジタルデータ化と方向及び半径に着目した分析 Invited
Kei Terayama
方向データの統計モデリングと応用事例 2014.8
AIによる”発見”に向けて:現状と展望 Invited
寺山慧
「動く流れるソフトマテリアル」勉強会 2024.10
AI-シミュレーション連携による材料探索: 分子設計と相図構築 Invited
寺山慧
第58回情報計測オンラインセミナー 2024.7
生成モデルと強化学習による 分子設計: 創薬から材料まで Invited
寺山慧
神奈川県・横浜市・川崎市主催オンラインセミナー AI創薬before/after 2024.1
分子生成AIによる創薬に向けて: 多目的最適化の課題と展望 Invited
寺山慧
よこはまNMR研究会 第73回ワークショップ「AI創薬」 2024.3
Data-Driven Functional Molecule Design through the Integration of AI and Simulation Invited
Kei Terayama
The 2nd Korea-Japan Workshop on Artificial Intelligence, Jeju Island, Republic of Korea 2024.8
データ駆動型相図構築: 状態図から液液相分離まで Invited
寺山慧
統計数学×情報×物質セミナー 2023.10
分子の未来を創る:汎用型機能分子設計AIシステムの開発
2024.10 - 2028.3
科学技術振興機構 創発的研究支援事業
寺山 慧
Authorship:Principal investigator
Development of photofunctional molecular systems to probe the nanoscale mechanics of dynamic soft materials
Grant number:24H00473 2024.4 - 2029.3
Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (A)
Grant amount:\47450000 ( Direct Cost: \36500000 、 Indirect Cost:\10950000 )
書字困難児支援のためのICTを用いた質的評価・支援プログラムの開発研究
Grant number:24K06182 2024.4 - 2027.3
日本学術振興会 科学研究費助成事業 基盤研究(C)
高畑 脩平, 寺山 慧
Grant amount:\1300000 ( Direct Cost: \1000000 、 Indirect Cost:\300000 )
「富岳」で目指すシミュレーション・AI駆動型次世代医療・創薬
2023.4 - 2026.3
文部科学省 「富岳」成果創出加速プログラム
Authorship:Coinvestigator(s)
Development of a qualitative assessment tool for children's handwriting ability
Grant number:21K12167 2021.4 - 2024.3
Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C) Grant-in-Aid for Scientific Research (C)
Grant amount:\2470000 ( Direct Cost: \1900000 、 Indirect Cost:\570000 )
Seeing through the sea floor: Development of a basis for evaluation of spatio-temporal environmental dynamics in seafloor surface sediments using acoustic technology
Grant number:20KK0238 2020.10 - 2025.3
Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Fund for the Promotion of Joint International Research (Fostering Joint International Research (B)) Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Grant amount:\18720000 ( Direct Cost: \14400000 、 Indirect Cost:\4320000 )
深層学習に基づくクロマグロ卵質予測システムの構築
Grant number:20K15587 2020.4 - 2023.3
日本学術振興会 科学研究費助成事業 若手研究 若手研究
寺山 慧
Grant amount:\4290000 ( Direct Cost: \3300000 、 Indirect Cost:\990000 )
本年度の主な成果は以下の通りである。
(1) 水産技術研究所養殖部門まぐろ養殖部の協力のもと290個の産卵直後のクロマグロ卵を収集・顕微鏡による撮影を実施し、続いてそれらのふ化実験を行い、各卵の卵質(ふ化の状況及び無給餌生残日数)データを収集した。撮影する際は焦点(細胞質・卵の輪郭・油球)を変えて3種類の画像を収集した。
(2) 深層学習を用いて卵質を予測するシステムを構築した。このシステムは卵が映った画像から卵部分だけをFaster R-CNNを用いて抜き出し、抽出した卵画像から深層ニューラルネットワークVGG16を用いて卵質を予測する。(1)で収集したデータを用いて教師あり学習を行い、卵画像の抜き出し及び卵質予測モデルを構築した。卵質としてここでは正常ふ化か否か、及び無給餌生残日数が4日以下か5日以上かを予測した。学習の結果正常ふ化予測では正解率0.856、無給餌生残日数予測では正解率0.804を達成した。予測精度は細胞質あるいは卵の輪郭に焦点が合っている時に高精度になる傾向が見られた。さらに、この予測精度は、熟練した養殖研究者4名による正常ふ化予測の精度より高いことを確認した。
(3) 卵質予測に重要な部位を可視化するために、Grad CAMを用いて予測に重要な部位の算出を行うシステムを構築した。解析の結果細胞質や卵の輪郭に注目が集まっており、形が崩れている部位も重視されていることが判明した。
(4) 上記の結果をまとめScientific Report誌に発表した。
Grant number:22500014 2010.4 - 2015.3
Japan Society for the Promotion of Science Grants-in-Aid for Scientific Research Grant-in-Aid for Scientific Research (C) Grant-in-Aid for Scientific Research (C)
TSUIKI Hideki
Grant amount:\3770000 ( Direct Cost: \2900000 、 Indirect Cost:\870000 )
Gray-code embedding is a representation of real numbers with sequences containing bottoms and an IM2 machine is a machine which operates on bottomed sequences. Proper dyadic subbase is a generalization of Gray-code embedding to topological spaces. We studied domain structures which correspond to finite states of IM2-machines that operate according to dyadic subbases. We also studied exact full-folding maps which are dynamical systems that derive proper dyadic subbases, and a stream calculus which input and output Gray-code embedding.
機械学習とその応用ー医療, 創薬, 材料科学から魚の養殖までー
Role(s): Lecturer
三菱みなとみらい技術館 サイエンスカフェ2019計算機科学の最前線 2020.1