2025/07/29 更新

所属以外の情報はresearchmapへの登録情報を転載しています。

写真a

イトウ ケンタロウ
伊藤 健太郎
Kentaro Ito
所属
生命医科学研究科 生命医科学専攻 助教
職名
助教
外部リンク

学位

  • 博士 (理学) ( 2018年3月   東京工業大学 )

研究キーワード

  • MTCLタンパク質

  • RecAファミリーリコンビナーゼ

  • DNA修復

  • 微小管の集合構造形成機構

  • DNA鎖交換反応

研究分野

  • ライフサイエンス / 分子生物学

  • ライフサイエンス / 生物物理学

学歴

  • 東京工業大学   大学院生命理工学研究科   分子生命科学専攻

    2011年4月 - 2017年3月

      詳細を見る

    国名: 日本国

    備考: 単位取得満期退学

    researchmap

  • 東京工業大学   生命理工学部

    2007年4月 - 2011年3月

      詳細を見る

経歴

  • 横浜市立大学   大学院 生命医科学研究科   助教

    2022年5月 - 現在

      詳細を見る

  • 東京工業大学   科学技術創成研究院   特任助教

    2020年10月 - 2022年4月

      詳細を見る

    国名:日本国

    researchmap

  • 東京工業大学   科学技術創成研究院   博士研究員

    2018年4月 - 2020年9月

      詳細を見る

  • 東京工業大学   生命理工学研究院   研究員

    2017年4月 - 2018年3月

      詳細を見る

  • 独立行政法人日本学術振興会   特別研究員

    2015年4月 - 2017年3月

      詳細を見る

論文

  • The Swi5–Sfr1 complex regulates Dmc1- and Rad51-driven DNA strand exchange proceeding through two distinct three-stranded intermediates by different mechanisms 査読

    Kentaro Ito, Takahisa Maki, Shuji Kanamaru, Masayuki Takahashi, Hiroshi Iwasaki

    Nucleic Acids Research   2024年9月

     詳細を見る

    担当区分:筆頭著者, 責任著者   掲載種別:研究論文(学術雑誌)   出版者・発行元:Oxford University Press (OUP)  

    Abstract

    In eukaryotes, Dmc1 and Rad51 are key proteins of homologous recombination. The Swi5–Sfr1 complex in fission yeast, a conserved auxiliary factor, stimulates DNA strand exchange driven by both Dmc1 and Rad51. Interestingly, biochemical analysis suggested that Swi5–Sfr1 regulates strand exchange activities of these recombinases differently, but the mechanisms were unclear. We previously developed a real-time system to analyze Rad51-driven DNA strand exchange and identified two topologically distinct three-stranded intermediates (complex 1 (C1) and complex 2 (C2)). Swi5–Sfr1 facilitates the C1–C2 transition and releases single-stranded DNA (ssDNA) from C2, acting as a strand exchange activator. In this study, we investigated fission yeast Dmc1-driven DNA strand exchange and the role of Swi5–Sfr1 in Dmc1 activity in real-time. Kinetic analysis revealed a three-step model for the Dmc1-driven reaction, similar to that of Rad51. Although Swi5–Sfr1 stimulated the Dmc1-driven reaction, it had a weaker impact than Rad51. Furthermore, Swi5–Sfr1 enhanced the association of Dmc1 with ssDNA by promoting filament nucleus formation, acting as a mediator, unlike its role with Rad51. This stimulation mechanism also differs from that of Ca2+ or ATP analog, AMP–PNP. Our findings suggest that Swi5–Sfr1 stimulates strand exchange activities of Dmc1 and Rad51 via different reaction steps.

    DOI: 10.1093/nar/gkae841

    researchmap

  • Linear dichroism reveals the perpendicular orientation of DNA bases in the RecA and Rad51 recombinase filaments: A possible mechanism for the strand exchange reaction. 査読 国際誌

    Masayuki Takahashi, Kentaro Ito, Hiroshi Iwasaki, Bengt Norden

    Chirality   36 ( 4 )   e23664   2024年4月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    Linear dichroism spectroscopy is used to investigate the structure of RecA family recombinase filaments (RecA and Rad51 proteins) with DNA for clarifying the molecular mechanism of DNA strand exchange promoted by these proteins and its activation. The measurements show that the recombinases promote the perpendicular base orientation of single-stranded DNA only in the presence of activators, indicating the importance of base orientation in the reaction. We summarize the results and discuss the role of DNA base orientation.

    DOI: 10.1002/chir.23664

    PubMed

    researchmap

  • Human Rad51 Protein Requires Higher Concentrations of Calcium Ions for D-Loop Formation than for Oligonucleotide Strand Exchange 査読

    Axelle Renodon-Corniere, Tsutomu Mikawa, Naoyuki Kuwabara, Kentaro Ito, Dmitri Levitsky, Hiroshi Iwasaki, Masayuki Takahashi

    International Journal of Molecular Sciences   2024年3月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    DOI: 10.3390/ijms25073633

    researchmap

  • Rrp1 translocase and ubiquitin ligase activities restrict the genome destabilising effects of Rad51 in fission yeast 査読

    Jakub Muraszko, Karol Kramarz, Bilge Argunhan, Kentaro Ito, Gabriela Baranowska, Yumiko Kurokawa, Yasuto Murayama, Hideo Tsubouchi, Sarah Lambert, Hiroshi Iwasaki, Dorota Dziadkowiec

    Nucleic Acids Research   49 ( 12 )   6832 - 6848   2021年7月

     詳細を見る

    掲載種別:研究論文(学術雑誌)   出版者・発行元:Oxford University Press (OUP)  

    <title>Abstract</title>
    Rad51 is the key protein in homologous recombination that plays important roles during DNA replication and repair. Auxiliary factors regulate Rad51 activity to facilitate productive recombination, and prevent inappropriate, untimely or excessive events, which could lead to genome instability. Previous genetic analyses identified a function for Rrp1 (a member of the Rad5/16-like group of SWI2/SNF2 translocases) in modulating Rad51 function, shared with the Rad51 mediator Swi5-Sfr1 and the Srs2 anti-recombinase. Here, we show that Rrp1 overproduction alleviates the toxicity associated with excessive Rad51 levels in a manner dependent on Rrp1 ATPase domain. Purified Rrp1 binds to DNA and has a DNA-dependent ATPase activity. Importantly, Rrp1 directly interacts with Rad51 and removes it from double-stranded DNA, confirming that Rrp1 is a translocase capable of modulating Rad51 function. Rrp1 affects Rad51 binding at centromeres. Additionally, we demonstrate in vivo and in vitro that Rrp1 possesses E3 ubiquitin ligase activity with Rad51 as a substrate, suggesting that Rrp1 regulates Rad51 in a multi-tiered fashion.

    DOI: 10.1093/nar/gkab511

    researchmap

  • A conserved Ctp1/CtIP C-terminal peptide stimulates Mre11 endonuclease activity 査読

    Aleksandar Zdravković, James M. Daley, Arijit Dutta, Tatsuya Niwa, Yasuto Murayama, Shuji Kanamaru, Kentaro Ito, Takahisa Maki, Bilge Argunhan, Masayuki Takahashi, Hideo Tsubouchi, Patrick Sung, Hiroshi Iwasaki

    Proceedings of the National Academy of Sciences of the United States of America   118 ( 11 )   2021年3月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    © 2021 National Academy of Sciences. All rights reserved. The Mre11-Rad50-Nbs1 complex (MRN) is important for repairing DNA double-strand breaks (DSBs) by homologous recombination (HR). The endonuclease activity of MRN is critical for resecting 5′- ended DNA strands at DSB ends, producing 3′-ended single-strand DNA, a prerequisite for HR. This endonuclease activity is stimulated by Ctp1, the Schizosaccharomyces pombe homolog of human CtIP. Here, with purified proteins, we show that Ctp1 phosphorylation stimulatesMRN endonuclease activity by inducing the association of Ctp1 with Nbs1. The highly conserved extreme C terminus of Ctp1 is indispensable for MRN activation. Importantly, a polypeptide composed of the conserved 15 amino acids at the C terminus of Ctp1 (CT15) is sufficient to stimulate Mre11 endonuclease activity. Furthermore, the CT15 equivalent from CtIP can stimulate human MRE11 endonuclease activity, arguing for the generality of this stimulatory mechanism. Thus, we propose that Nbs1-mediated recruitment of CT15 plays a pivotal role in the activation of the Mre11 endonuclease by Ctp1/CtIP.

    DOI: 10.1073/pnas.2016287118

    Scopus

    researchmap

  • Real-time tracking reveals catalytic roles for the two DNA binding sites of Rad51 査読

    Kentaro Ito, Yasuto Murayama, Yumiko Kurokawa, Shuji Kanamaru, Yuichi Kokabu, Takahisa Maki, Tsutomu Mikawa, Bilge Argunhan, Hideo Tsubouchi, Mitsunori Ikeguchi, Masayuki Takahashi, Hiroshi Iwasaki

    Nature Communications   11 ( 1 )   2020年12月

     詳細を見る

    担当区分:筆頭著者   掲載種別:研究論文(学術雑誌)   出版者・発行元:Springer Science and Business Media {LLC}  

    © 2020, The Author(s). During homologous recombination, Rad51 forms a nucleoprotein filament on single-stranded DNA to promote DNA strand exchange. This filament binds to double-stranded DNA (dsDNA), searches for homology, and promotes transfer of the complementary strand, producing a new heteroduplex. Strand exchange proceeds via two distinct three-strand intermediates, C1 and C2. C1 contains the intact donor dsDNA whereas C2 contains newly formed heteroduplex DNA. Here, we show that the conserved DNA binding motifs, loop 1 (L1) and loop 2 (L2) in site I of Rad51, play distinct roles in this process. L1 is involved in formation of the C1 complex whereas L2 mediates the C1–C2 transition, producing the heteroduplex. Another DNA binding motif, site II, serves as the DNA entry position for initial Rad51 filament formation, as well as for donor dsDNA incorporation. Our study provides a comprehensive molecular model for the catalytic process of strand exchange mediated by eukaryotic RecA-family recombinases.

    DOI: 10.1038/s41467-020-16750-3

    Scopus

    PubMed

    researchmap

  • Two auxiliary factors promote Dmc1-driven DNA strand exchange via stepwise mechanisms 査読

    Hideo Tsubouchi, Bilge Argunhan, Kentaro Ito, Masayuki Takahashi, Hiroshi Iwasaki

    Proceedings of the National Academy of Sciences of the United States of America   117 ( 22 )   2020年6月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    © 2020 National Academy of Sciences. All rights reserved. Homologous recombination (HR) is a universal mechanism operating in somatic and germ-line cells, where it contributes to the maintenance of genome stability and ensures the faithful distribution of genetic material, respectively. The ability to identify and exchange the strands of two homologous DNA molecules lies at the heart of HR and is mediated by RecA-family recombinases. Dmc1 is a meiosis-specific RecA homolog in eukaryotes, playing a predominant role in meiotic HR. However, Dmc1 cannot function without its two major auxiliary factor complexes, Swi5-Sfr1 and Hop2-Mnd1. Through biochemical reconstitutions, we demonstrate that Swi5-Sfr1 and Hop2-Mnd1 make unique contributions to stimulate Dmc1-driven strand exchange in a synergistic manner. Mechanistically, Swi5-Sfr1 promotes establishment of the Dmc1 nucleoprotein filament, whereas Hop2-Mnd1 defines a critical, rate-limiting step in initiating strand exchange. Following execution of this function, we propose that Swi5-Sfr1 then promotes strand exchange with Hop2-Mnd1. Thus, our findings elucidate distinct yet complementary roles of two auxiliary factors in Dmc1-driven strand exchange, providing mechanistic insights into some of the most critical steps in meiotic HR.

    DOI: 10.1073/pnas.1917419117

    Scopus

    PubMed

    researchmap

  • Cooperative interactions facilitate stimulation of Rad51 by the Swi5-Sfr1 auxiliary factor complex 査読

    Bilge Argunhan, Masayoshi Sakakura, Negar Afshar, Misato Kurihara, Kentaro Ito, Takahisa Maki, Shuji Kanamaru, Yasuto Murayama, Hideo Tsubouchi, Masayuki Takahashi, Hideo Takahashi, Hiroshi Iwasaki

    eLife   9   2020年3月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    © Argunhan et al. Although Rad51 is the key protein in homologous recombination (HR), a major DNA double-strand break repair pathway, several auxiliary factors interact with Rad51 to promote productive HR. We present an interdisciplinary characterization of the interaction between Rad51 and Swi5-Sfr1, a conserved auxiliary factor. Two distinct sites within the intrinsically disordered N-terminus of Sfr1 (Sfr1N) were found to cooperatively bind Rad51. Deletion of this domain impaired Rad51 stimulation in vitro and rendered cells sensitive to DNA damage. By contrast, amino acid-substitution mutants, which had comparable biochemical defects, could promote DNA repair, suggesting that Sfr1N has another role in addition to Rad51 binding. Unexpectedly, the DNA repair observed in these mutants was dependent on Rad55-Rad57, another auxiliary factor complex hitherto thought to function independently of Swi5-Sfr1. When combined with the finding that they form a higher-order complex, our results imply that Swi5-Sfr1 and Rad55-Rad57 can collaboratively stimulate Rad51 in Schizosaccharomyces pombe.

    DOI: 10.7554/eLife.52566

    Scopus

    PubMed

    researchmap

  • Real-time Observation of the DNA Strand Exchange Reaction Mediated by Rad51 査読

    Kentaro Ito, Bilge Argunhan, Hideo Tsubouchi, Hiroshi Iwasaki

    Journal of visualized experiments : JoVE   ( 144 )   2019年2月

     詳細を見る

    担当区分:筆頭著者   掲載種別:研究論文(学術雑誌)  

    The DNA strand exchange reaction mediated by Rad51 is a critical step of homologous recombination. In this reaction, Rad51 forms a nucleoprotein filament on single-stranded DNA (ssDNA) and captures double-stranded DNA (dsDNA) non-specifically to interrogate it for a homologous sequence. After encountering homology, Rad51 catalyzes DNA strand exchange to mediate pairing of the ssDNA with the complementary strand of the dsDNA. This reaction is highly regulated by numerous accessary proteins in vivo. Although conventional biochemical assays have been successfully employed to examine the role of such accessory protein in vitro, kinetic analysis of intermediate formation and its progression into a final product has proven challenging due to the unstable and transient nature of the reaction intermediates. To observe these reaction steps directly in solution, fluorescence resonance energy transfer (FRET)-based real-time observation systems of this reaction were established. Kinetic analysis of real-time observations shows that the DNA strand exchange reaction mediated by Rad51 obeys a three-step reaction model involving the formation of a three-strand DNA intermediate, maturation of this intermediate, and the release of ssDNA from the mature intermediate. The Swi5-Sfr1 complex, an accessary protein conserved in eukaryotes, strongly enhances the second and third steps of this reaction. The FRET-based assays presented here enable us to uncover the molecular mechanisms through which recombination accessary proteins stimulate the DNA strand exchange activity of Rad51. The primary goal of this protocol is to enhance the repertoire of techniques available to researchers in the field of homologous recombination, particularly those working with proteins from species other than Schizosaccharomyces pombe, so that the evolutionary conservation of the findings presented herein can be determined.

    DOI: 10.3791/59073

    Scopus

    PubMed

    researchmap

  • Swi5-Sfr1 stimulates Rad51 recombinase filament assembly by modulating Rad51 dissociation 査読

    Chih Hao Lu, Hsin Yi Yeh, Guan Chin Su, Kentaro Ito, Yumiko Kurokawa, Hiroshi Iwasaki, Peter Chi, Hung Wen Li

    Proceedings of the National Academy of Sciences of the United States of America   115 ( 43 )   E10059 - E10068   2018年10月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    © 2018 National Academy of Sciences. All rights reserved. Eukaryotic Rad51 protein is essential for homologous-recombination repair of DNA double-strand breaks. Rad51 recombinases first assemble onto single-stranded DNA to forma nucleoprotein filament, required for function in homology pairing and strand exchange. This filament assembly is the first regulation step in homologous recombination. Rad51 nucleation is kinetically slow, and several accessory factors have been identified to regulate this step. Swi5-Sfr1 (S5S1) stimulates Rad51-mediated homologous recombination by stabilizing Rad51 nucleoprotein filaments, but the mechanism of stabilization is unclear. We used single-molecule tethered particle motion experiments to show that mouse S5S1 (mS5S1) efficiently stimulates mouse RAD51 (mRAD51) nucleus formation and inhibits mRAD51 dissociation from filaments. We also used single-molecule fluorescence resonance energy transfer experiments to show that mS5S1 promotes stable nucleus formation by specifically preventing mRAD51 dissociation. This leads to a reduction of nucleation size from three mRAD51 to two mRAD51 molecules in the presence of mS5S1. Compared with mRAD51, fission yeast Rad51 (SpRad51) exhibits fast nucleation but quickly dissociates from the filament. SpS5S1 specifically reduces SpRad51 disassembly to maintain a stable filament. These results clearly demonstrate the conserved function of S5S1 by primarily stabilizing Rad51 on DNA, allowing both the formation of the stable nucleus and the maintenance of filament length.

    DOI: 10.1073/pnas.1812753115

    Scopus

    PubMed

    researchmap

  • RecA requires two molecules of Mg<sup>2+</sup> ions for its optimal strand exchange activity in vitro 査読

    Raeyeong Kim, Shuji Kanamaru, Tsutomu Mikawa, Chantal Prévost, Kentaro Ishii, Kentaro Ito, Susumu Uchiyama, Masayuki Oda, Hiroshi Iwasaki, Seog K. Kim, Masayuki Takahashi

    Nucleic Acids Research   46 ( 5 )   2548 - 2559   2018年3月

     詳細を見る

    掲載種別:研究論文(学術雑誌)  

    © The Author(s) 2018. Mg2+ ion stimulates the DNA strand exchange reaction catalyzed by RecA, a key step in homologous recombination. To elucidate the molecular mechanisms underlying the role of Mg2+ and the strand exchange reaction itself, we investigated the interaction of RecA with Mg2+ and sought to determine which step of the reaction is affected. Thermal stability, intrinsic fluorescence, and native mass spectrometric analyses of RecA revealed that RecA binds at least two Mg2+ ions with KD ∼ 2 mM and 5 mM. Deletion of the C-terminal acidic tail of RecA made its thermal stability and fluorescence characteristics insensitive to Mg2+ and similar to those of full-length RecA in the presence of saturating Mg2+. These observations, together with the results of a molecular dynamics simulation, support the idea that the acidic tail hampers the strand exchange reaction by interacting with other parts of RecA, and that binding of Mg2+ to the tail prevents these interactions and releases RecA from inhibition. We observed that binding of the first Mg2+ stimulated joint molecule formation, whereas binding of the second stimulated progression of the reaction. Thus, RecA is actively involved in the strand exchange step as well as bringing the two DNAs close to each other.

    DOI: 10.1093/nar/gky048

    Scopus

    PubMed

    researchmap

  • Two three-strand intermediates are processed during Rad51-driven DNA strand exchange 査読

    Kentaro Ito, Yasuto Murayama, Masayuki Takahashi, Hiroshi Iwasaki

    Nature Structural and Molecular Biology   25 ( 1 )   29 - 36   2018年1月

     詳細を見る

    担当区分:筆頭著者   記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Nature Publishing Group  

    © 2017 The Author(s). During homologous recombination, Rad51 forms a nucleoprotein filament with single-stranded DNA (ssDNA) that undergoes strand exchange with homologous double-stranded DNA (dsDNA). Here, we use real-time analysis to show that strand exchange by fission yeast Rad51 proceeds via two distinct three-strand intermediates, C1 and C2. Both intermediates contain Rad51, but whereas the donor duplex remains intact in C1, the ssDNA strand is intertwined with the complementary strand of the donor duplex in C2. Swi5-Sfr1, an evolutionarily conserved recombination activator, facilitates the C1-C2 transition and subsequent ssDNA release from C2 to complete strand exchange in an ATP-hydrolysis-dependent manner. In contrast, Ca2+, which activates the Rad51 filament by curbing ATP hydrolysis, facilitates the C1-C2 transition but does not promote strand exchange. These results reveal that Swi5-Sfr1 and Ca2+ have different activation modes in the late synaptic phase, despite their common function in stabilizing the presynaptic filament.

    DOI: 10.1038/s41594-017-0002-8

    Scopus

    PubMed

    researchmap

  • Multiple Regulation of Rad51-Mediated Homologous Recombination by Fission Yeast Fbh1 査読

    Yasuhiro Tsutsui, Yumiko Kurokawa, Kentaro Ito, Md Shahjahan P. Siddique, Yumiko Kawano, Fumiaki Yamao, Hiroshi Iwasaki

    PLoS Genetics   10 ( 8 )   2014年8月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)   出版者・発行元:Public Library of Science  

    © 2014 Tsutsui et al. Fbh1, an F-box helicase related to bacterial UvrD, has been proposed to modulate homologous recombination in fission yeast. We provide several lines of evidence for such modulation. Fbh1, but not the related helicases Srs2 and Rqh1, suppressed the formation of crossover recombinants from single HO-induced DNA double-strand breaks. Purified Fbh1 in complex with Skp1 (Fbh1-Skp1 complex) inhibited Rad51-driven DNA strand exchange by disrupting Rad51 nucleoprotein filaments in an ATP-dependent manner; this disruption was alleviated by the Swi5-Sfr1 complex, an auxiliary activator of Rad51. In addition, the reconstituted SCFFbh1 complex, composed of purified Fbh1-Skp1 and Pcu1-Rbx1, displayed ubiquitin-ligase E3 activity toward Rad51. Furthermore, Fbh1 reduced the protein level of Rad51 in stationary phase in an F-box-dependent, but not in a helicase domain-independent manner. These results suggest that Fbh1 negatively regulates Rad51-mediated homologous recombination via its two putative, unrelated activities, namely DNA unwinding/translocation and ubiquitin ligation. In addition to its anti-recombinase activity, we tentatively suggest that Fbh1 might also have a pro-recombination role in vivo, because the Fbh1-Skp1 complex stimulated Rad51-mediated strand exchange in vitro after strand exchange had been initiated.

    DOI: 10.1371/journal.pgen.1004542

    Scopus

    PubMed

    researchmap

  • Swi5-Sfr1 protein stimulates Rad51-mediated DNA strand exchange reaction through organization of DNA bases in the presynaptic filament 査読

    Louise H. Fornander, Axelle Renodon-Cornière, Naoyuki Kuwabara, Kentaro Ito, Yasuhiro Tsutsui, Toshiyuki Shimizu, Hiroshi Iwasaki, Bengt Nordén, Masayuki Takahashi

    Nucleic Acids Research   42 ( 4 )   2358 - 2365   2014年2月

     詳細を見る

    記述言語:英語   掲載種別:研究論文(学術雑誌)  

    The Swi5-Sfr1 heterodimer protein stimulates the Rad51-promoted DNA strand exchange reaction, a crucial step in homologous recombination. To clarify how this accessory protein acts on the strand exchange reaction, we have analyzed how the structure of the primary reaction intermediate, the Rad51/single- stranded DNA (ssDNA) complex filament formed in the presence of ATP, is affected by Swi5-Sfr1. Using flow linear dichroism spectroscopy, we observe that the nucleobases of the ssDNA are more perpendicularly aligned to the filament axis in the presence of Swi5-Sfr1, whereas the bases are more randomly oriented in the absence of Swi5-Sfr1. When using a modified version of the natural protein where the N-terminal part of Sfr1 is deleted, which has no affinity for DNA but maintained ability to stimulate the strand exchange reaction, we still observe the improved perpendicular DNA base orientation. This indicates that Swi5-Sfr1 exerts its activating effect through interaction with the Rad51 filament mainly and not with the DNA. We propose that the role of a coplanar alignment of nucleobases induced by Swi5-Sfr1 in the presynaptic Rad51/ssDNA complex is to facilitate the critical matching with an invading double-stranded DNA, hence stimulating the strand exchange reaction. © 2013 The Author(s). Published by Oxford University Press.

    DOI: 10.1093/nar/gkt1257

    Scopus

    PubMed

    researchmap

▼全件表示

MISC

  • Human Rad51 Protein Requires Higher Concentrations of Calcium Ions for D-loop Formation Than for Oligonucleotide Strand Exchange

    Masayuki Takahashi, Axelle Renodon-Corniere, Tsutomu Mikawa, Naoyuki Kuwabara, Kentaro Ito, Dmitri Levitsky, Hiroshi Iwasaki

    preprints.org   2024年1月

     詳細を見る

    出版者・発行元:MDPI AG  

    Human RAD51 protein (HsRad51)-promoted DNA strand exchange, a crucial step in homologous recombination, is regulated by proteins and calcium ions. The activator protein Swi5-Sfr1 and Ca2+ ions stimulate different reaction steps and induce a perpendicular orientation of DNA bases in the presynaptic complex. To investigate the importance of base orientation in the strand exchange reaction, we examined the Ca2+ concentration dependence of strand exchange activities and structural changes in the presynaptic complex. Our results show that optimal D-loop formation (strand exchange with closed circular DNA) requires Ca2+ concentrations greater than 5 mM, while 1 mM is sufficient for strand exchange between two oligonucleotides. The structural change, which is evidenced by an increase in fluorescence intensity of poly(dεA) (a poly(dA) analog), reaches a plateau at 1 mM Ca2+. Meanwhile, the linear dichroism signal intensity at 260 nm, which is indicative of rigid perpendicular DNA base orientation, requires &amp;gt;2 mM Ca2+ for saturation and thus correlates with the stimulation of D-loop formation. Therefore, Ca2+ exerts two different effects. Thermal stability measurements suggest that HsRad51 binds two Ca2+ ions with KD values of 0.3 mM and 2.5 mM, implying that one step is stimulated by one Ca2+ bond and the other by two Ca2+ bonds. We further discuss the parallels between Mg2+ activation of RecA and Ca2+ activation of HsRad51.

    DOI: 10.20944/preprints202401.1991.v1

    researchmap

  • Rrp1 translocase and ubiquitin ligase activities restrict the genome destabilising effects of Rad51 in fission yeast

    Jakub Muraszko, Bilge Argunhan, Kentaro Ito, Gabriela Baranowska, Anna Barg-Wojas, Karol Kramarz, Yumiko Kurokawa, Hiroshi Iwasaki, Dorota Dziadkowiec

    bioRxiv   2020年5月

     詳細を見る

    出版者・発行元:Cold Spring Harbor Laboratory  

    Abstract

    Rad51 is the key protein in homologous recombination DNA repair and has important roles during DNA replication. Auxiliary factors regulate Rad51 activity to facilitate productive, and prevent inappropriate, recombination that could lead to genome instability. Previous genetic analyses identified a function for Rrp1 (a member of the Rad5/16-like group of SWI2/SNF2 translocases) in counteracting Rad51 activity, shared with the Rad51 mediator Swi5-Sfr1 and the Srs2 anti-recombinase. Here, we show that Rrp1 overproduction alleviates the toxicity associated with excessive Rad51 activity in a manner dependent on Rrp1 ATPase domain. Purified Rrp1 binds to DNA and has a DNA-dependent ATPase activity. Importantly, Rrp1 directly interacts with Rad51 and removes it from double-stranded DNA, confirming that Rrp1 is a translocase capable of modulating Rad51 activity. Additionally, we demonstrate that Rrp1 possesses E3 ubiquitin ligase activity with Rad51 as a substrate, suggesting that Rrp1 regulates Rad51 in a multi-tiered fashion.

    DOI: 10.1101/2020.05.30.125286

    researchmap

  • Real-time tracking reveals the catalytic process of Rad51-driven DNA strand exchange

    Kentaro Ito, Yasuto Murayama, Yumiko Kurokawa, Shuji Kanamaru, Yuichi Kokabu, Takahisa Maki, Bilge Argunhan, Hideo Tsubouchi, Mitsunori Ikeguchi, Masayuki Takahashi, Hiroshi Iwasaki

    bioRxiv   2019年11月

     詳細を見る

    担当区分:筆頭著者   出版者・発行元:Cold Spring Harbor Laboratory  

    Abstract

    During homologous recombination, Rad51 forms a nucleoprotein filament on single-stranded DNA to promote DNA strand exchange. This filament binds to double-stranded DNA (dsDNA), searches for homology, and promotes transfer of the complementary strand, producing a new heteroduplex. Strand exchange proceeds via two distinct three-strand intermediates, C1 and C2. C1 contains the intact donor dsDNA whereas C2 contains newly formed heteroduplex DNA. Here, we show that conserved DNA binding motifs, loop 1 (L1) and loop 2 (L2) in site I of Rad51, play distinct roles in this process. L1 is involved in formation of the C1 complex whereas L2 mediates the C1-C2 transition, producing the heteroduplex. Another DNA binding motif, site II, serves as the DNA entry position for initial Rad51 filament formation, as well as for second donor dsDNA incorporation. Our study provides a comprehensive molecular model for the catalytic process of strand exchange mediated by eukaryotic RecA family recombinases.

    DOI: 10.1101/839324

    researchmap

  • Rad51 Interaction Analysis Reveals a Functional Interplay Among Recombination Auxiliary Factors

    Bilge Argunhan, Masayoshi Sakakura, Negar Afshar, Misato Kurihara, Kentaro Ito, Takahisa Maki, Shuji Kanamaru, Yasuto Murayama, Hideo Tsubouchi, Masayuki Takahashi, Hideo Takahashi, Hiroshi Iwasaki

    bioRxiv   2019年8月

     詳細を見る

    出版者・発行元:Cold Spring Harbor Laboratory  

    ABSTRACT

    Although Rad51 is the key protein in homologous recombination (HR), a major DNA double-strand break repair pathway, several auxiliary factors interact with Rad51 to promote productive HR. Here, we present an interdisciplinary characterization of the interaction between Rad51 and Swi5-Sfr1, a widely conserved auxiliary factor. NMR and site-specific crosslinking experiments revealed two distinct sites within the intrinsically disordered N-terminus of Sfr1 that cooperatively bind to Rad51. Although disruption of this binding severely impaired Rad51 stimulation in vitro, interaction mutants did not show any defects in DNA repair. Unexpectedly, in the absence of the Rad51 paralogs Rad55-Rad57, which constitute another auxiliary factor complex, these interaction mutants were unable to promote DNA repair. Our findings provide molecular insights into Rad51 stimulation by Swi5-Sfr1 and suggest that, rather than functioning in an independent subpathway of HR as was previously proposed, Rad55-Rad57 facilitates the recruitment of Swi5-Sfr1 to Rad51.

    DOI: 10.1101/738179

    researchmap

講演・口頭発表等

  • DNA鎖交換反応におけるRad51のDNA結合部位の機能解析 招待

    伊藤健太郎, 岩﨑博史

    日本生化学会第95回大会  2022年11月 

     詳細を見る

    開催年月日: 2022年11月

    記述言語:日本語   会議種別:シンポジウム・ワークショップ パネル(公募)  

    researchmap

  • Rad51によるDNA三本鎖中間体からヘテロ二重鎖DNA形成機構の酵素学的解析 招待

    伊藤健太郎, 岩﨑博史

    日本生化学会第93回大会 

     詳細を見る

    開催年月日: 2020年9月

    記述言語:日本語   会議種別:シンポジウム・ワークショップ パネル(公募)  

    researchmap

受賞

  • コラファス賞

    2018年9月  

     詳細を見る

  • The 10th 3R international symposium Poster Award

    2016年11月  

     詳細を見る

  • 日本遺伝学会第88回大会 Best Paper 賞

    2016年9月   日本遺伝学会  

     詳細を見る

共同研究・競争的資金等の研究課題

  • まだら状の結合様式を示す微小管側面相互作用因子MTCL1による微小管修復機構の解析

    研究課題/領域番号:23K05769  2023年4月 - 2026年3月

    日本学術振興会  科学研究費助成事業  基盤研究(C)

    伊藤 健太郎

      詳細を見る

    配分額:4680000円 ( 直接経費:3600000円 、 間接経費:1080000円 )

    researchmap

  • RecAファミリーリコンビナーゼによるヘテロ二重鎖形成機構の原子分解能での理解

    研究課題/領域番号:21K15050  2021年4月 - 2023年3月

    日本学術振興会  科学研究費助成事業  若手研究

    伊藤 健太郎

      詳細を見る

    配分額:4680000円 ( 直接経費:3600000円 、 間接経費:1080000円 )

    相同組換えの中心的な反応は進化的に保存されたRecAファミリーリコンビナーゼによるDNA鎖交換反応である。この反応では、まずリコンビナーゼが単鎖DNAと結合した核酸・タンパク質複合体を形成し、この複合体がドナー二重鎖DNAを捕捉してさらに高次複合体を形成して、その内部で相同配列の検索とDNA鎖の交換を行う。また、真核生物のRecAホモログであるRad51とDmc1では、この反応を完遂するために様々な補助因子を必要とする。そのため、相同配列検索とDNA鎖交換の分子機構、補助因子によるRad51とDmc1の活性化機構はいまだ解明されていない。
    そこで本申請研究では、申請者が確立したDNA鎖交換反応のリアルタイム解析系、多数のRad51とDmc1リコンビナーゼの変異体コレクションとクライオ電子顕微鏡観察を組み合わせて、この分子機構を原子分解能で理解することを目的としている。
    現在までにスクリーニングによって、Swi5-Sfr1複合体との遺伝学的相互作用が特異的に欠損しているRad51変異体の同定に成功し、この変異体を解析した結果Rad51のATP加水分解活性とSwi5-Sfr1の機能が密接に関係していることを明らかにした。一方でRad51とDmc1によるDNA鎖交換反応リアルタイム解析から、両方のリコンビナーゼの補助因子として働くSwi5-Sfr1複合体が全く違うメカニズムで2つのリコンビナーゼの活性を制御していることを明らかにした。また、クライオ電子顕微鏡によりRad51-単鎖DNA複合体の高解像度の構造を決定することに成功した。

    researchmap

  • 真核細胞型RecAファミリーリコンビナーゼによるヘテロ二重鎖形成の分子機構

    研究課題/領域番号:19K16039  2019年4月 - 2021年3月

    日本学術振興会  科学研究費助成事業  若手研究

    伊藤 健太郎

      詳細を見る

    配分額:4160000円 ( 直接経費:3200000円 、 間接経費:960000円 )

    相同組換えは遺伝情報の維持に重要な生理機能で全ての生物種で保存されている。相同組換えは多段階の複雑な反応が組合わさって進行するが、その中でRecAファミリーリコンビナーゼによって触媒されるDNA鎖交換反応が中心的なステップである。しかし、リコンビナーゼによってどのように相同DNA配列が認識されてDNA鎖が交換されるかは不明であった。そこで、本研究では真核細胞型RecAファミリーリコンビナーゼであるRad51の変異体を多数作製して、DNA鎖交換反応をリアルタイムで解析し、この反応の分子メカニズムを明らかにした。

    researchmap

  • Rad51リコンビナーゼによるDNA鎖交換反応の分子機構

    研究課題/領域番号:15J08408  2015年4月 - 2017年3月

    日本学術振興会  科学研究費助成事業 特別研究員奨励費  特別研究員奨励費

    伊藤 健太郎

      詳細を見る

    配分額:1700000円 ( 直接経費:1700000円 )

    相同組換えの中心的な反応であるDNA鎖交換はRad51リコンビナーゼによって触媒される。この反応では、まずDNA二重鎖切断末端がプロセッシングされてできた単鎖DNAにRad51が結合しヌクレオプロテインフィラメントを形成する。そして、この高次複合体が二重鎖DNAをキャッチし相同配列の検索、相同二重鎖とのDNA鎖交換反応をおこなう。我々はこれまでにRad51の活性化因子として分裂酵母Swi5-Sfr1複合体を同定した。本研究ではSwi5-Sfr1複合体が多段階反応であるDNA鎖交換の各段階にどのように作用するか調べるために、オリゴDNAの末端に蛍光基を付加し蛍光共鳴エネルギー移動(FRET)の原理を利用して反応中間体形成と最終産物の生成をリアルタイムに観察する系を構築した。解析の結果、DNA鎖交換反応では二つの中間体を経て最終産物が生成されること。中間体の形成にはRad51のATP結合、中間体の遷移・最終産物の形成にはRad51のATPase活性が重要であることがわかった。更にSwi5-Sfr1複合体は、Rad51のATPase活性依存的に中間体の遷移・最終産物の生成を強く促進することが明らかになった。
    さらに、Rad51-単鎖DNAフィラメント表面に露出していると予想されるアミノ酸をそれぞれアラニンに置換した変異体を147種作製し、分裂酵母の遺伝学的性質を利用してSwi5-Sfr1との相互作用に特異的に欠損のあるRad51変異体を9種分離した。そのうち1種について解析を行った結果、野生型に比べATPase活性が遅くなり、Swi5-Sfr1複合体によって中間体の遷移・最終産物生成がほとんど促進されないことがわかった。この結果は生体内でもRad51のATPase活性にカップルしたSwi5-Sfr1複合体によるDNA鎖交換反応の促進が重要であることを支持する。

    researchmap

メディア報道

  • 「DNA相同組換えの中心」DNA鎖交換の反応を解明 新聞・雑誌

    科学新聞  4面  2020年7月

     詳細を見る

  • Rad51に依存的なDNA鎖交換反応は2種類の3本鎖DNA中間体をへて進行する インターネットメディア

    ライフサイエンス論文新着レビュー  DOI: 10.7875/first.author.2018.001  2018年

     詳細を見る

  • 相同組換えのDNA鎖交換反応「世界初」東工大、国立遺伝研が解明 新聞・雑誌

    科学新聞  1面  2017年12月

     詳細を見る