Updated on 2025/10/08

写真a

 
Hirokazu Tanimoto
 
Organization
Graduate School of Nanobioscience Department of Materials System Science Associate Professor
School of Science Department of Science
Title
Associate Professor
External link

Degree

  • 博士(理学) ( 東京大学 )

Research Interests

  • 細胞生物学

  • 生物物理学

Research Areas

  • Life Science / Biophysics

  • Natural Science / Biophysics, chemical physics and soft matter physics

  • Life Science / Cell biology

Education

  • The University of Tokyo

    2008.4 - 2012.3

      More details

  • The University of Tokyo

    2006.4 - 2008.3

      More details

  • The University of Tokyo   Faculty of Science   Department of Physics

    2001.4 - 2006.3

      More details

Research History

  • Yokohama City University   Associate Professor

    2020.4

      More details

  • Yokohama City University   Lecturer

    2018.4 - 2020.3

      More details

  • ジャックモノー研究所   博士研究員

    2012.10 - 2018.3

      More details

  • The University of Tokyo

    2012.4 - 2012.9

      More details

Papers

  • In Situ Mechanics of the Cytoskeleton

    Ryota Orii, Hirokazu Tanimoto

    Cytoskeleton   2025

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Wiley  

    ABSTRACT

    Not only for man‐made architecture but also for living cells, the relationship between force and structure is a fundamental properties that governs their mechanical behaviors. However, our knowledge of the mechanical properties of intracellular structures is very limited because of the lack of direct measurement methods. We established high‐force intracellular magnetic tweezers that can generate calibrated forces up to 10 nN, enabling direct force measurements of the cytoskeleton. Using this method, we show that the strain field of the microtubule and actin meshwork follow the same scaling, suggesting that the two cytoskeletal systems behave as an integrated elastic body. Furthermore, quantification of structural response of single microtubules demonstrates that microtubules are enclosed by the elastic medium of filamentous actin. Our results defining the force–structure relationship of the cytoskeleton serve as a framework to understand cellular behaviors by direct intracellular mechanical measurement.

    DOI: 10.1002/cm.21995

    researchmap

  • Structural response of microtubule and actin cytoskeletons to direct intracellular load Reviewed

    Ryota Orii, Hirokazu Tanimoto

    Journal of Cell Biology   224 ( 2 )   e202403136   2024

  • Systematic mapping of cell wall mechanics in the regulation of cell morphogenesis Reviewed

    Valeria Davì, Louis Chevalier, Haotian Guo, Hirokazu Tanimoto, Katia Barrett, Etienne Couturier, Arezki Boudaoud, Nicolas Minc

    Proceedings of the National Academy of Sciences   116 ( 28 )   13833 - 13838   2019

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Proceedings of the National Academy of Sciences  

    Significance

    The cell wall is a thin polymeric layer encasing the membrane of bacterial, fungal, and vegetal cells, which supports viability and defines cell shape and the mode of growth and division. The material properties of the cell wall are thus key for understanding morphogenesis, but remain difficult to quantify. We introduce a systematic method to map subcellular values of cell wall thickness and bulk elasticity in large populations of yeast cells with unprecedented accuracy. By screening libraries of mutants with defects in cell shapes, we demonstrate that cell walls are stiffer in larger cells or larger cell portions. This size-dependent stiffening constrains cell size definition and promotes cell mechanical integrity.

    DOI: 10.1073/pnas.1820455116

    researchmap

    Other Link: https://pnas.org/doi/pdf/10.1073/pnas.1820455116

  • Intermittent Pili-Mediated Forces Fluidize Neisseria meningitidis Aggregates Promoting Vascular Colonization Reviewed

    Daria Bonazzi, Valentina Lo Schiavo, Silke Machata, Ilyas Djafer-Cherif, Pierre Nivoit, Valeria Manriquez, Hirokazu Tanimoto, Julien Husson, Nelly Henry, Hugues Chaté, Raphael Voituriez, Guillaume Duménil

    Cell   174 ( 1 )   143-155.e16   2018

     More details

  • Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival Reviewed

    Valeria Davì, Hirokazu Tanimoto, Dmitry Ershov, Armin Haupt, Henry De Belly, Remi Le Borgne, Etienne Couturier, Arezki Boudaoud, Nicolas Minc

    Developmental Cell   45 ( 2 )   170-182. e7   2018

  • Physical forces determining the persistency and centring precision of microtubule asters Reviewed

    Hirokazu Tanimoto, Jeremy Sallé, Louise Dodin, Nicolas Minc

    Nature Physics   14   848-854   2018

     More details

  • Spatially Different Tissue-Scale Diffusivity Shapes ANGUSTIFOLIA3 Gradient in Growing Leaves Reviewed

    Kensuke Kawade, Hirokazu Tanimoto, Gorou Horiguchi, Hirokazu Tsukaya

    Biophysical Journal   113 ( 5 )   1109 - 1120   2017.9

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.bpj.2017.06.072

    Web of Science

    researchmap

  • Quantitative approaches for the study of microtubule aster motion in large eggs Reviewed

    Hirokazu Tanimoto, Nicolas Minc

    Methods in cell biology   139   69-80   2017

     More details

  • Shape-motion relationships of centering microtubule asters Reviewed

    Hirokazu Tanimoto, Akatsuki Kimura, Nicolas Minc

    Journal of Cell Biology   212 ( 7 )   777 - 787   2016.3

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1083/jcb.201510064

    Web of Science

    researchmap

  • 核はどのようにして細胞の中心を見つけるのか? Reviewed

    谷本博一, 木村健二, 木村暁

    生物物理   56 ( 5 )   271-274 - 274   2016

     More details

    Language:Japanese   Publisher:The Biophysical Society of Japan General Incorporated Association  

    <p>The various molecules and organelles in a eukaryotic cell are suitably positioned within the cell to carry out their functions at the appropriate time. This intracellular positioning is accomplished through interplay among the active transport mechanisms, intracellular fluctuations, and physical properties of the components inside the cell. Here, we review the recent advances in research on how the nucleus moves toward, and maintains its position at, the geometrical center of the cell. This question has attracted researchers from various fields, and is a good subject for interdisciplinary collaboration.</p>

    DOI: 10.2142/biophys.56.271

    CiNii Books

    researchmap

    Other Link: http://search.jamas.or.jp/link/ui/2017077753

  • Actin-Based Transport Adapts Polarity Domain Size to Local Cellular Curvature Reviewed

    Dada Bonazzi, Armin Haupt, Hirokazu Tanimoto, Delphine Delacour, Delphine Salort, Nicolas Minc

    Current Biology   25 ( 20 )   2677 - 2683   2015.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.cub.2015.08.046

    Web of Science

    researchmap

  • Mobility of signaling molecules: the key to deciphering plant organogenesis Reviewed

    Kensuke Kawade, Hirokazu Tanimoto

    Journal of Plant Research   128 ( 1 )   17 - 25   2015.1

     More details

  • A Simple Force-Motion Relation for Migrating Cells Revealed by Multipole Analysis of Traction Stress Reviewed

    Hirokazu Tanimoto, Masaki Sano

    Biophysical Journal   106 ( 1 )   16 - 25   2014.1

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1016/j.bpj.2013.10.041

    Web of Science

    researchmap

  • Large fluctuation and Levy movement of an active deformable particle Reviewed

    Miki Y. Matsuo, Hirokazu Tanimoto, Masaki Sano

    Europhysics Letters   102 ( 4 )   40012   2013.5

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1209/0295-5075/102/40012

    Web of Science

    researchmap

  • Dynamics of Traction Stress Field during Cell Division Reviewed

    Hirokazu Tanimoto, Masaki Sano

    Physical Review Letters   109 ( 24 )   248110   2012.12

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    DOI: 10.1103/PhysRevLett.109.248110

    Web of Science

    researchmap

▼display all

Research Projects

  • 磁性液体を用いた細胞小器官の大規模操作

    Grant number:22K19277  2022.6 - 2025.3

    日本学術振興会  科学研究費助成事業  挑戦的研究(萌芽)

    谷本 博一

      More details

    Grant amount:\6500000 ( Direct Cost: \5000000 、 Indirect Cost:\1500000 )

    昨年度に引き続き磁性液体を用いた細胞小器官の力学操作を進めた。小胞体、ゴルジ体、ミトコンドリアの3つの代表的な細胞小器官について、直接外力を印加することで大規模な構造変形を引き起こすことに成功した。

    researchmap

  • 細胞の力学と情報

    Grant number:20H05539  2020.4 - 2022.3

    日本学術振興会  科学研究費助成事業 新学術領域研究(研究領域提案型)  新学術領域研究(研究領域提案型)

    谷本 博一

      More details

    Grant amount:\6760000 ( Direct Cost: \5200000 、 Indirect Cost:\1560000 )

    時間情報を用いた牽引力計算手法の開発を進めた。前年度構築した計算プログラムを実際の測定データに応用することで開発した新手法が既存の手法と同程度の精度を実現できることを明らかにした。

    researchmap

  • 細胞内における機械的力の生成、伝播、統合

    Grant number:19K22400  2019.6 - 2023.3

    日本学術振興会  科学研究費助成事業  挑戦的研究(萌芽)

    谷本 博一

      More details

    Grant amount:\6500000 ( Direct Cost: \5000000 、 Indirect Cost:\1500000 )

    本年度は細胞に外部から加えた力が基盤の変形として検出できる条件の検討を行った。実験条件を検討することで細胞に加えたnN程度の力を基盤の変形として検出することに成功した。

    researchmap

  • 微小管星状体の細胞内動態を決める力学要素の包括的解析

    Grant number:19H03199  2019.4 - 2023.3

    日本学術振興会  科学研究費助成事業  基盤研究(B)

    谷本 博一, 木村 暁

      More details

    Grant amount:\17810000 ( Direct Cost: \13700000 、 Indirect Cost:\4110000 )

    微小管星状体の細胞内移動に伴う細胞質の流れ場の測定を遂行した。共焦点顕微鏡を用いて細胞内に導入した蛍光トレーサー粒子の3次元追跡を行い、星状体運動に伴う細胞質の流れ場を測定することに成功した。

    researchmap

  • 細胞壁の(3+1)次元動力学

    Grant number:19H05368  2019.4 - 2021.3

    日本学術振興会  科学研究費助成事業  新学術領域研究(研究領域提案型)

    谷本 博一

      More details

    Grant amount:\9100000 ( Direct Cost: \7000000 、 Indirect Cost:\2100000 )

    (1)微細加工技術を用いたマイクロ還流培養系
    花粉管細胞壁の変形場を長時間測定するために、微細加工技術を用いて高さ10ミクロン程度のマイクロ還流チャンバーを作製した。作製した還流チャンバー内で花粉管細胞をin vitro培養して、極性成長する花粉管細胞の先端部分に蛍光トレーサー粒子を継続的に供給することに成功した。
    (2)細胞壁の3次元形状可視化
    花粉管細胞壁の内側/外側境界を二重標識する実験系を構築して、花粉管細胞壁の3次元変形場の予備的な測定に成功した。測定結果に基づいて、細胞壁の面内流れ、厚さ、歪みの実時間解析を行った。

    researchmap