Updated on 2025/05/19

写真a

 
Ikuko Hayashi
 
Organization
Graduate School of Medical Life Science Department of Medical Life Science Associate Professor
School of Science Department of Science
Title
Associate Professor
Profile
細胞運動や染色体分配を制御する微小管および微小管関連タンパク質について、X線結晶構造解析を通じて分子群の動態の解明を目指します。また近年知られるようになった原核生物の遺伝子分配に関わる細胞骨格因子についても立体構造・ 生化学・分子運動を調べることで分子機構の解析を行っています。細胞骨格や重合分子がいかに生命現象に影響を与えるか明らかにできればと考えています。
External link

Degree

  • 博士(工学) ( 東京大学 )

Research Interests

  • 細胞骨格

  • 分子生物学

  • 構造生物学

  • 生化学

Research Areas

  • Life Science / Structural biochemistry

  • Life Science / Biophysics

  • Life Science / Cell biology

  • Life Science / Applied microbiology

  • Life Science / Bacteriology

Education

  • University of Tokyo   Faculty of Engineering

    1992.4 - 1997

      More details

  • The University of Tokyo   The Faculty of Engineering

    - 1992.3

      More details

Research History

  • Yokohama City University International College of Arts and Sciences Medical Life Science Graduate School of Medical Life Science Department of Medical Life Science   Associate Professor

      More details

Professional Memberships

Papers

  • CLASP2 binding to curved microtubule tips promotes flux and stabilizes kinetochore attachments. Reviewed International journal

    Hugo Girão, Naoyuki Okada, Tony A Rodrigues, Alexandra O Silva, Ana C Figueiredo, Zaira Garcia, Tatiana Moutinho-Santos, Ikuko Hayashi, Jorge E Azevedo, Sandra Macedo-Ribeiro, Helder Maiato

    The Journal of cell biology   219 ( 2 )   2020.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    CLASPs are conserved microtubule plus-end-tracking proteins that suppress microtubule catastrophes and independently localize to kinetochores during mitosis. Thus, CLASPs are ideally positioned to regulate kinetochore-microtubule dynamics required for chromosome segregation fidelity, but the underlying mechanism remains unknown. Here, we found that human CLASP2 exists predominantly as a monomer in solution, but it can self-associate through its C-terminal kinetochore-binding domain. Kinetochore localization was independent of self-association, and driving monomeric CLASP2 to kinetochores fully rescued normal kinetochore-microtubule dynamics, while partially sustaining mitosis. CLASP2 kinetochore localization, recognition of growing microtubule plus-ends through EB-protein interaction, and the ability to associate with curved microtubule protofilaments through TOG2 and TOG3 domains independently sustained normal spindle length, timely spindle assembly checkpoint satisfaction, chromosome congression, and faithful segregation. Measurements of kinetochore-microtubule half-life and poleward flux revealed that CLASP2 regulates kinetochore-microtubule dynamics by integrating distinctive microtubule-binding properties at the kinetochore-microtubule interface. We propose that kinetochore CLASP2 suppresses microtubule depolymerization and detachment by binding to curved protofilaments at microtubule plus-ends.

    DOI: 10.1083/jcb.201905080

    PubMed

    researchmap

  • Cooperative DNA binding of the plasmid partitioning protein TubR from the Bacillus cereus pXO1 plasmid Reviewed

    Hayashi I, Oda T, Sato M, Fuchigami S

    Journal of Molecular Biology   430 ( 24 )   5015 - 5028   2018

     More details

    Authorship:Lead author, Corresponding author   Language:English  

    researchmap

  • Molecular basis of the microtubule-regulating activity of microtubule crosslinking factor 1. Reviewed International journal

    Mohammad Abdul Kader, Tomoko Satake, Masatoshi Yoshida, Ikuko Hayashi, Atsushi Suzuki

    PloS one   12 ( 8 )   e0182641   2017

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:PUBLIC LIBRARY SCIENCE  

    The variety of microtubule arrays observed across different cell types should require a diverse group of proteins that control microtubule organization. Nevertheless, mainly because of the intrinsic propensity of microtubules to easily form bundles upon stabilization, only a small number of microtubule crosslinking proteins have been identified, especially in postmitotic cells. Among them is microtubule crosslinking factor 1 (MTCL1) that not only interconnects microtubules via its N-terminal microtubule-binding domain (N-MTBD), but also stabilizes microtubules via its C-terminal microtubule-binding domain (C-MTBD). Here, we comprehensively analyzed the assembly structure of MTCL1 to elucidate the molecular basis of this dual activity in microtubule regulation. Our results indicate that MTCL1 forms a parallel dimer not only through multiple homo-interactions of the central coiled-coil motifs, but also the most C-terminal non-coiled-coil region immediately downstream of the C-MTBD. Among these homo-interaction regions, the first coiled-coil motif adjacent to N-MTBD is sufficient for the MTCL1 function to crosslink microtubules without affecting the dynamic property, and disruption of this motif drastically transformed MTCL1-induced microtubule assembly from tight to network-like bundles. Notably, suppression of the homo-interaction of this motif inhibited the endogenous MTCL1 function to stabilize Golgi-associated microtubules that are essential for Golgi-ribbon formation. Because the microtubule-stabilizing activity of MTCL1 is completely attributed to C-MTBD, the present study suggests possible interplay between N-MTBD and C-MTBD, in which normal crosslinking and accumulation of microtubules by N-MTBD is essential for microtubule stabilization by C-MTBD.

    DOI: 10.1371/journal.pone.0182641

    Web of Science

    PubMed

    researchmap

  • MTCL1 crosslinks and stabilizes non-centrosomal microtubules on the Golgi membrane. Reviewed International journal

    Yoshinori Sato, Kenji Hayashi, Yoshiko Amano, Mikiko Takahashi, Shigenobu Yonemura, Ikuko Hayashi, Hiroko Hirose, Shigeo Ohno, Atsushi Suzuki

    Nature communications   5   5266 - 5266   2014.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:NATURE PUBLISHING GROUP  

    Recent studies have revealed the presence of a microtubule subpopulation called Golgi-derived microtubules that support Golgi ribbon formation, which is required for maintaining polarized cell migration. CLASPs and AKAP450/CG-NAP are involved in their formation, but the underlying molecular mechanisms remain unclear. Here, we find that the microtubule-crosslinking protein, MTCL1, is recruited to the Golgi membranes through interactions with CLASPs and AKAP450/CG-NAP, and promotes microtubule growth from the Golgi membrane. Correspondingly, MTCL1 knockdown specifically impairs the formation of the stable perinuclear microtubule network to which the Golgi ribbon tethers and extends. Rescue experiments demonstrate that besides its crosslinking activity mediated by the N-terminal microtubule-binding region, the C-terminal microtubule-binding region plays essential roles in these MTCL1 functions through a novel microtubule-stabilizing activity. These results suggest that MTCL1 cooperates with CLASPs and AKAP450/CG-NAP in the formation of the Golgi-derived microtubules, and mediates their development into a stable microtubule network.

    DOI: 10.1038/ncomms6266

    Web of Science

    PubMed

    researchmap

  • CLASPs are required for proper microtubule localization of end-binding proteins. Reviewed International journal

    Ashley D Grimaldi, Takahisa Maki, Benjamin P Fitton, Daniel Roth, Dmitry Yampolsky, Michael W Davidson, Tatyana Svitkina, Anne Straube, Ikuko Hayashi, Irina Kaverina

    Developmental cell   30 ( 3 )   343 - 52   2014.8

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:CELL PRESS  

    Microtubule (MT) plus-end tracking proteins (+TIPs) preferentially localize to MT plus ends. End-binding proteins (EBs) are master regulators of the +TIP complex; however, it is unknown whether EBs are regulated by other +TIPs. Here, we show that cytoplasmic linker-associated proteins (CLASPs) modulate EB localization at MTs. In CLASP-depleted cells, EBs localized along the MT lattice in addition to plus ends. The MT-binding region of CLASP was sufficient for restoring normal EB localization, whereas neither EB-CLASP interactions nor EB tail-binding proteins are involved. In vitro assays revealed that CLASP directly functions to remove EB from MTs. Importantly, this effect occurs specifically during MT polymerization, but not at preformed MTs. Increased GTP-tubulin content within MTs in CLASP-depleted cells suggests that CLASPs facilitate GTP hydrolysis to reduce EB lattice binding. Together, these findings suggest that CLASPs influence the MT lattice itself to regulate EB and determine exclusive plus-end localization of EBs in cells.

    DOI: 10.1016/j.devcel.2014.06.026

    Web of Science

    PubMed

    researchmap

  • The novel PAR-1-binding protein MTCL1 has crucial roles in organizing microtubules in polarizing epithelial cells. Reviewed International journal

    Yoshinori Sato, Masashi Akitsu, Yoshiko Amano, Kazunari Yamashita, Mariko Ide, Kyoko Shimada, Akio Yamashita, Hisashi Hirano, Noriaki Arakawa, Takahisa Maki, Ikuko Hayashi, Shigeo Ohno, Atsushi Suzuki

    Journal of cell science   126 ( Pt 20 )   4671 - 83   2013.10

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:COMPANY OF BIOLOGISTS LTD  

    The establishment of epithelial polarity is tightly linked to the dramatic reorganization of microtubules (MTs) from a radial array to a vertical alignment of non-centrosomal MT bundles along the lateral membrane, and a meshwork under the apical and basal membranes. However, little is known about the underlying molecular mechanism of this polarity-dependent MT remodeling. The evolutionarily conserved cell polarity-regulating kinase PAR-1 (known as MARK in mammals), whose activity is essential for maintaining the dynamic state of MTs, has indispensable roles in promoting this process. Here, we identify a novel PAR-1-binding protein, which we call microtubule crosslinking factor 1 (MTCL1), that crosslinks MTs through its N-terminal MT-binding region and subsequent coiled-coil motifs. MTCL1 colocalized with the apicobasal MT bundles in epithelial cells, and its knockdown impaired the development of these MT bundles and the epithelial-cell-specific columnar shape. Rescue experiments revealed that the N-terminal MT-binding region was indispensable for restoring these defects of the knockdown cells. MT regrowth assays indicated that MTCL1 was not required for the initial radial growth of MTs from the apical centrosome but was essential for the accumulation of non-centrosomal MTs to the sublateral regions. Interestingly, MTCL1 recruited a subpopulation of PAR-1b (known as MARK2 in mammals) to the apicobasal MT bundles, and its interaction with PAR-1b was required for MTCL1-dependent development of the apicobasal MT bundles. These results suggest that MTCL1 mediates the epithelial-cell-specific reorganization of non-centrosomal MTs through its MT-crosslinking activity, and cooperates with PAR-1b to maintain the correct temporal balance between dynamic and stable MTs within the apicobasal MT bundles.

    DOI: 10.1242/jcs.127845

    Web of Science

    PubMed

    researchmap

  • Crystallization and preliminary X-ray data analysis of the pXO1 plasmid-partitioning factor TubZ from Bacillus cereus Reviewed

    Shota Hoshino, Takahisa Maki, Ikuko Hayashi

    ACTA CRYSTALLOGRAPHICA SECTION F-STRUCTURAL BIOLOGY AND CRYSTALLIZATION COMMUNICATIONS   68   1550 - 1553   2012.12

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:WILEY-BLACKWELL  

    TubZ is a structural homologue of tubulin and FtsZ GTPases, which are involved in the type III plasmid-partitioning system. TubZ assembles into polymers in a GTP-dependent manner and drives plasmid segregation as 'cytomotive' filaments. In this study, C-terminally truncated TubZ from Bacillus cereus was crystallized in the presence or absence of GDP by the hanging-drop vapour-diffusion method. The crystal of TubZ in complex with GDP belonged to the monoclinic space group P2(1), with unit-cell parameters a = 67.05, b = 84.49, c = 67.66 angstrom, beta = 92.92 degrees, and was non-isomorphous with GDP-bound TubZ previously crystallized in the presence of the slowly hydrolysable GTP analogue GTP gamma S. TubZ was also crystallized in the free form and the crystal belonged to space group P2(1), with unit-cell parameters a = 53.91, b = 65.54, c = 58.18 angstrom, beta = 106.19 degrees. Data were collected to 1.7 and 2.1 angstrom resolution for the free and GDP-bound forms, respectively.

    DOI: 10.1107/S1744309112045551

    Web of Science

    researchmap

  • Filament Formation of the FtsZ/Tubulin-like Protein TubZ from the Bacillus cereus pXO1 Plasmid Reviewed

    Shota Hoshino, Ikuko Hayashi

    JOURNAL OF BIOLOGICAL CHEMISTRY   287 ( 38 )   32103 - 32112   2012.9

     More details

    Authorship:Last author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)   Publisher:AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC  

    Stable maintenance of low-copy-number plasmids requires partition (par) systems that consist of a nucleotide hydrolase, a DNA-binding protein, and a cis-acting DNA-binding site. The FtsZ/tubulin-like GTPase TubZ was identified as a partitioning factor of the virulence plasmids pBtoxis and pXO1 in Bacillus thuringiensis and Bacillus anthracis, respectively. TubZ exhibits high GTPase activity and assembles into polymers both in vivo and in vitro, and its "treadmilling" movement is required for plasmid stability in the cell. To investigate the molecular mechanism of pXO1 plasmid segregation by TubZ filaments, we determined the crystal structures of Bacillus cereus TubZ in apo-, GDP-, and guanosine 5'-3-O-(thio)triphosphate (GTP gamma S)-bound forms at resolutions of 2.1, 1.9, and 3.3 angstrom, respectively. Interestingly, the slowly hydrolyzable GTP analog GTP gamma S was hydrolyzed to GDP in the crystal. In the post-GTP hydrolysis state, GDP-bound B. cereus TubZ forms a dimer by the head-to-tail association of individual subunits in the asymmetric unit, which is similar to the protofilament formation of FtsZ and B. thuringiensis TubZ. However, the M loop interacts with the nucleotide-binding site of the adjacent subunit and stabilizes the filament structure in a different manner, which indicates that the molecular assembly of the TubZ-related par systems is not stringently conserved. Furthermore, we show that the C-terminal tail of TubZ is required for association with the DNA-binding protein TubR. Using a combination of crystallography, site-directed mutagenesis, and biochemical analysis, our results provide the structural basis of the TubZ polymer that may drive DNA segregation.

    DOI: 10.1074/jbc.M112.373803

    Web of Science

    researchmap

  • A mutation of the fission yeast EB1 overcomes negative regulation by phosphorylation and stabilizes microtubules. Reviewed International journal

    Makoto Iimori, Kanako Ozaki, Yuji Chikashige, Toshiyuki Habu, Yasushi Hiraoka, Takahisa Maki, Ikuko Hayashi, Chikashi Obuse, Tomohiro Matsumoto

    Experimental cell research   318 ( 3 )   262 - 75   2012.2

     More details

    Language:English   Publishing type:Research paper (scientific journal)   Publisher:ELSEVIER INC  

    Mal3 is a fission yeast homolog of EB1, a plus-end tracking protein (+TIP). We have generated a mutation (89R) replacing glutamine with arginine in the calponin homology (CH) domain of Mal3. Analysis of the 89R mutant in vitro has revealed that the mutation confers a higher affinity to microtubules and enhances the intrinsic activity to promote the microtubule-assembly. The mutant Mal3 is no longer a +TIP, but binds strongly the microtubule lattice. Live cell imaging has revealed that while the wild type Mal3 proteins dissociate from the tip of the growing microtubules before the onset of shrinkage, the mutant Mal3 proteins persist on microtubules and reduces a rate of shrinkage after a longer pausing period. Consequently, the mutant Mal3 proteins cause abnormal elongation of microtubules composing the spindle and aster. Mal3 is phosphorylated at a cluster of serine/threonine residues in the linker connecting the CH and EB1-like C-terminal motif domains. The phosphorylation occurs in a microtubule-dependent manner and reduces the affinity of Mal3 to microtubules. We propose that because the 89R mutation is resistant to the effect of phosphorylation, it can associate persistently with microtubules and confers a stronger stability of microtubules likely by reinforcing the cylindrical structure.

    DOI: 10.1016/j.yexcr.2011.11.006

    Web of Science

    PubMed

    researchmap

  • Characterization of a conserved "threonine clasp" in CAP-Gly domains: role of a functionally critical OH/pi interaction in protein recognition. Reviewed International journal

    Michael J Plevin, Ikuko Hayashi, Mitsuhiko Ikura

    Journal of the American Chemical Society   130 ( 45 )   14918 - 9   2008.11

     More details

    Language:English   Publishing type:Research paper (scientific journal)  

    XH/pi hydrogen bonds have been predicted to make important contributions to protein structure and function. NMR evidence is presented for an OH/pi interaction between a highly conserved threonine and phenylalanine pair found specifically in CAP-Gly domains associated with mictrotubule plus ends. The functional contribution of this nonclassical hydrogen bond in target peptide recognition is demonstrated via subtle point mutagenesis. The OH/pi interaction is part of a TxFxxxxW motif that comprises a conserved "threonine clasp" that defines function in CAP-Gly domains.

    DOI: 10.1021/ja805576n

    PubMed

    researchmap

  • [Molecular mechanism of microtubule plus-end tracking proteins]. Reviewed

    Ikuko Hayashi

    Seikagaku. The Journal of Japanese Biochemical Society   80 ( 6 )   521 - 30   2008.6

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

    PubMed

    researchmap

  • CLIP170 autoinhibition mimics intermolecular interactions with p150Glued or EB1. Reviewed International journal

    Ikuko Hayashi, Michael J Plevin, Mitsuhiko Ikura

    Nature structural & molecular biology   14 ( 10 )   980 - 1   2007.10

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    CLIP170 and p150(Glued) localize to the plus ends of growing microtubules. Using crystallography and NMR, we show that autoinhibitory interactions within CLIP170 use the same binding determinants as CLIP170's intermolecular interactions with p150(Glued). These interactions have both similar and distinct features when compared with the p150(Glued)-EB1 complex. Our data thus demonstrate that regulation of microtubule dynamics by plus end-tracking proteins (+TIPs) occurs through direct competition between homologous binding interfaces.

    PubMed

    researchmap

  • Crystallographic Evidence for Water-assisted Photo-induced Peptide Cleavage in the Stony Coral Fluorescent Protein Kaede

    Ikuko Hayashi, Hideaki Mizuno, Kit I. Tong, Toshiaki Furuta, Fujie Tanaka, Masato Yoshimura, Atsushi Miyawaki, Mitsuhiko Ikura

    Journal of Molecular Biology   372 ( 4 )   918 - 926   2007.9

     More details

    Publishing type:Research paper (scientific journal)   Publisher:Elsevier BV  

    DOI: 10.1016/j.jmb.2007.06.037

    researchmap

  • Structural basis for the activation of microtubule assembly by the EB1 and p150Glued complex. Reviewed International journal

    Ikuko Hayashi, Andrew Wilde, Tapas Kumar Mal, Mitsuhiko Ikura

    Molecular cell   19 ( 4 )   449 - 60   2005.8

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    Plus-end tracking proteins, such as EB1 and the dynein/dynactin complex, regulate microtubule dynamics. These proteins are thought to stabilize microtubules by forming a plus-end complex at microtubule growing ends with ill-defined mechanisms. Here we report the crystal structure of two plus-end complex components, the carboxy-terminal dimerization domain of EB1 and the microtubule binding (CAP-Gly) domain of the dynactin subunit p150Glued. Each molecule of the EB1 dimer contains two helices forming a conserved four-helix bundle, while also providing p150Glued binding sites in its flexible tail region. Combining crystallography, NMR, and mutational analyses, our studies reveal the critical interacting elements of both EB1 and p150Glued, whose mutation alters microtubule polymerization activity. Moreover, removal of the key flexible tail from EB1 activates microtubule assembly by EB1 alone, suggesting that the flexible tail negatively regulates EB1 activity. We, therefore, propose that EB1 possesses an auto-inhibited conformation, which is relieved by p150Glued as an allosteric activator.

    PubMed

    researchmap

  • [Structural basis of microtubule plus-end-tracking proteins]. Reviewed

    Ikuko Hayashi, Mitsuhiko Ikura

    Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme   49 ( 9 )   1274 - 9   2004.7

     More details

    Language:Japanese   Publishing type:Research paper (scientific journal)  

    PubMed

    researchmap

  • Crystal structure of the amino-terminal microtubule-binding domain of end-binding protein 1 (EB1). Reviewed International journal

    Ikuko Hayashi, Mitsuhiko Ikura

    The Journal of biological chemistry   278 ( 38 )   36430 - 4   2003.9

     More details

    Authorship:Lead author, Corresponding author   Language:English   Publishing type:Research paper (scientific journal)  

    The end-binding protein 1 (EB1) family is a highly conserved group of proteins that localizes to the plus-ends of microtubules. EB1 has been shown to play an important role in regulating microtubule dynamics and chromosome segregation, but its regulation mechanism is poorly understood. We have determined the 1.45-A resolution crystal structure of the amino-terminal domain of EB1, which is essential for microtubule binding, and show that it forms a calponin homology (CH) domain fold that is found in many proteins involved in the actin cytoskeleton. The functional CH domain for actin binding is a tandem pair, whereas EB1 is the first example of a single CH domain that can associate with the microtubule filament. Although our biochemical study shows that microtubule binding of EB1 is electrostatic in part, our mutational analysis suggests that the hydrophobic network, which is partially exposed in our crystal structure, is also important for the association. We propose that, like other actin-binding CH domains, EB1 employs the hydrophobic interaction to bind to microtubules.

    PubMed

    researchmap

▼display all

Books

  • 微小管伸長端結合タンパク質の分子制御機構

    生化学  2008 

     More details

  • 微小管末端結合蛋白質の構造解析

    蛋白質 核酸 酵素  2004 

     More details

  • 原核生物における細胞分裂位置の決定機構

    細胞工学  2001 

     More details

MISC

Research Projects

  • カルモジュリンに制御される植物病原細菌のエフェクターの構造機能解析

    Grant number:22K05388  2022.4 - 2025.3

    日本学術振興会  科学研究費助成事業  基盤研究(C)

    林 郁子

      More details

    Grant amount:\4030000 ( Direct Cost: \3100000 、 Indirect Cost:\930000 )

    researchmap

  • 病原性バチルス属の毒素プラスミド分配の分子機構

    Grant number:19K05774  2019.4 - 2023.3

    日本学術振興会  科学研究費助成事業  基盤研究(C)

    林 郁子

      More details

    Grant amount:\4420000 ( Direct Cost: \3400000 、 Indirect Cost:\1020000 )

    炭疽菌などの病原性バチルス族の毒素遺伝子は低コピー数プラスミドにコードされる。この毒素プラスミドは細胞内で数個しか存在しないことから、プラスミド分配にはプラスミド上にコードされたチューブリン相同タンパク質TubZが分配モーターとして必要である。TubZはGTP依存的に重合して極性のある線維構造を形成する。TubZ線維は微小管同様プラス端で伸長しマイナス端で脱重合する性質をもち、プラスミドはTubZ線維のマイナス端にDNA結合タンパク質TubRとともに局在しけん引される。しかし脱重合する線維の末端においてどのようにプラスミドが脱着を繰り返しながらけん引されるのか、その分子機構は不明である。
    2021年度はTubZの動態に焦点をあてて解析を進めた。重合活性は光散乱法により定量的に解析するとともに、高速AFMにより線維構造の解析とプラス端・マイナス端の重合速度を求めた。私たちはこれまでの生化学的解析からTubZ線維の脱重合速度がDNAの存在下で上昇することを明らかにしている。しかし試験管内でのTubZとDNAの結合実験からはその相互作用を検出することができなかった。高速AFMの解析より、TubZ線維重合時にDNAとの相互作用を観察することができたため、速度論的解析を行った。
    TubZの重合、およびDNAの相互作用に深く関与すると推測されるC末端tailの天然編成領域について、変異体を利用した生化学的解析を行った。C末端tailは塩基性に富む領域であるが、その変異に伴い重合能の低下ばかりでなくDNAとの相互作用に影響を与えることがわかった。

    researchmap

  • Study of crosslinked and stabilized microtubules

    Grant number:16H04765  2016.4 - 2019.3

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (B)

    Suzuki Atsushi, OKADA Yasushi, SATAKE Tomoko

      More details

    Grant amount:\17550000 ( Direct Cost: \13500000 、 Indirect Cost:\4050000 )

    Microtubule is the essential cytoskeletal filament indispensable for cell polarity establishment. In this study, we have studied the molecular mechanisms by which microtubules are stabilized and crosslinked, and the physiological significance of such microtubule regulations. We have obtained the following results about the novel microtubule-regulating protein, MTCL1, which we had found previously. ① the N-terminal region of MTCL1 crosslinks dynamic microtubule flexibly. ② the C-terminal region of MTCL1 stabilizes microtubules by inducing the GTP-bound form of tubulin within the filament. ③ through these activities, MTCL1 plays essential roles for the development of axon initial segment and axonal polarity of cerebellar Purkinje neurons.

    researchmap

  • 重合分子モーターにより制御されるプラスミド分配装置の分子機構

    Grant number:15H01326  2015.4 - 2017.3

    日本学術振興会  科学研究費助成事業  新学術領域研究(研究領域提案型)

    林 郁子

      More details

    Grant amount:\11700000 ( Direct Cost: \9000000 、 Indirect Cost:\2700000 )

    本課題はcytomotive filamentとよばれる重合性のタンパク質(重合分子モーター)TubZが生み出す動力によって制御されるセレウス菌低コピー数pXO1様プラスミドの分配機構を分子レベルで明らかにすることを目的とする。TubZは毒素プラスミドをもつバチルス属亜種に保存された真核生物チューブリンの相同タンパク質であり、毒素プラスミドの分配に必須である。私達はこれまでTubZとその関連因子であるDNA結合タンパク質TubRの結晶構造を決定するとともに、試験管内における重合・脱重合反応の再構成系を確立し、TubZの動力産生・制御機構を評価することを試みてきた。
    平成28年度はTubZの重合活性化の分子機構をより詳細に生化学的に解析した。この条件に基づき全反射照明蛍光顕微鏡を用いたTubZ重合反応の可視化実験を行った。TubZタンパク質はN末端やC末端に修飾を導入すると機能阻害されることがわかっており、従来細胞生物学で用いられるGFP融合タンパク質を利用することはできない。そこでTubZ配列の内部に変異を導入して化学修飾により蛍光標識を行った。また同様の変異体を用いて、ビオチン化することも可能にした。これらの標識TubZ変異体を用いることで、顕微鏡において基板上にTubZ分子を一部固定化し分子動態を観察する系を構築した。
    TubZにはもう一つのDNA結合タンパク質TubYが制御に関わる。TubYは2つのドメイン構造をもつことが配列解析からわかっているが、そのうちのひとつである多量体化ドメインの結晶構造を決定した。結晶構造をもとに変異体を作成し、TubZへの影響を生化学的に解析した。

    researchmap

  • プラスミド分配を制御するTubZ重合分子モーターの構造機能解析

    Grant number:25117519  2013.4 - 2015.3

    日本学術振興会  科学研究費助成事業  新学術領域研究(研究領域提案型)

    林 郁子

      More details

    Grant amount:\10010000 ( Direct Cost: \7700000 、 Indirect Cost:\2310000 )

    本課題はcytomotive filamentとよばれる重合性の蛋白質(重合分子モーター)TubZが生み出す動力によって制御されるセレウス菌低コピー数pXO1様プラスミドの分配機構を分子レベルで明らかにすることを目的とする。TubZは毒素プラスミドをもつバチルス属亜種に保存された真核生物チューブリンの相同蛋白質であり、毒素プラスミドの分配に必須であることが明らかになっている。私達はこれまでTubZの結晶構造の決定および試験管内における重合反応系の確立を完了するとともに、tubZとレギュロンを組むtubRとtubYの遺伝子産物である2つのDNA結合蛋白質がtubRZオペロンの転写制御に関わることを明らかにした。またTubRの結晶構造とDNAの認識配列、オペロンにおける結合領域を決定した。
    平成26年度は、TubRとその結合領域の複合体を作成し、結晶化スクリーニングのための解析を行った。質量分析法でゲルシフト解析により得られた結果と同じ量比で複合体が形成されていることを確認した。またTubYはDNA結合領域と多量体化ドメインの2つの領域から成る蛋白質であるが、それぞれの領域について結晶化に成功、x線回折まで確認した。TubZの活性化にはTubR、TubY、DNA結合領域が必要であることを試験管内で明らかにし、再構成系を確立した。さらにセレウス菌の形質転換実験を行い、形質転換の系を確立した。今後はtubYRZレギュロンの遺伝子を細胞内に導入することで細胞内局在を調べる。

    researchmap

  • Molecular mechanism of microtubule stabilization by plus-end tracking proteins

    Grant number:22570190  2010 - 2012

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Scientific Research (C)

    HAYASHI Ikuko, YASUNAGA Takuo

      More details

    Grant amount:\4680000 ( Direct Cost: \3600000 、 Indirect Cost:\1080000 )

    Microtubule plus-endtracking protein CLASP proteins playa critical role in chromosomal segregation and cell migration. We determined the crystal structures of two microtubule-binding TOG domains in CLASP2. By mutational analysis, we showed that bothTOG domains are essential for CLASP2 binding to microtubules and are able to stabilizemicrotubules to a maximum extent when CLASP2 forms a complex with another microtubule-binding protein EB1.

    researchmap

  • Structural analysis of microtubule motor using peptide array system

    Grant number:20870033  2008 - 2009

    Japan Society for the Promotion of Science  Grants-in-Aid for Scientific Research  Grant-in-Aid for Young Scientists (Start-up)

    HAYASHI Ikuko

      More details

    Grant amount:\3198000 ( Direct Cost: \2460000 、 Indirect Cost:\738000 )

    I have established the bacterial over-expression system of the FHA domain region in KIF1C. The oligomerization state of recombinant proteins was examined by gel-filtration and chemical cross-linking analyses. We are now investigating the intra-molecular interaction site using peptide-array system.

    researchmap

  • 微小管結合蛋白質の構造生物学

      More details

    Grant type:Competitive

    微小管はすべての真核生物に保存された、細胞骨格を形成する主要成分のひとつである。その構造は細胞の形、細胞内輸送、細胞分裂などの様々な機能に関係している。私は微小管を含めた蛋白質間の認識機構とその機能への影響を立体構造に基づき明らかにすることに重点を置いて、特にx線結晶構造解析法を用いて研究を行っている。

    researchmap

▼display all